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2.6. symmetry of the plane. A map from plane itself is called a
rigid motion, or an isometry, if it is distance-preserving. Let S be
a subset of the plane. Then the subgroups of rigid motions preserving
S is called the symmetry of S. It’s well-known that:

Example 2.6.1.

Let S be the regular n-gon centered at the origin. Then the symme-
try of S id the group Ds,. O

In order to build this is a more solid foundation, we need to work a
little bit more.

A list of rigid motions consists of:

1. Orientation-preserving motions:

a. Translation.

b. Rotation.

2. Orientation-reversing motions:

a. Reflection.

b. Glide reflection, i.e. reflecting about a line [ and then translating

by a non-zero vector a parallel to [.
Theorem 2.6.2. The above list is complete.

Sketch. We first fix some notations:

t,: translation by a vector a.

pe: rotation by an angle 6 about the origin.
r: reflection about the z-axis.

Step 1. Orientation preserving motions that fix the origin are {pp}.
Step 2. Let m ne an orientation preserving motion. If m(o) = a, then
t_,m = pg for some . by Step 1. Thus m = t,ps.

Step 3. If m is not a translation, i.e. 6 # 0, then m is a rotation about
a point p. To see this, first show that m has a fixed point, denoted p,
if 6 # 0. A point on the plane can be written as p + x,

m(p+z) =tups(p+z) = po(p+x)+a=ps(p)+pe(x) +a=p+psz).

Step 4. Orientation reversing motions that fix the origin are {pyr}.
For given such m, it’s clear that rm preserves the orientation and fixes
the origin. So rm = py for some 0. Thus m = rpy = p_gr. Also note
that pgr is the reflection about [, denoted r;, which is the line obtained
by rotating z-axis by %0.

Step 5. Let m be an orientation reversing motion. Then m(o) = a for
some a. Thus t_,m is an orientation reversing motion that fixes origin,
hence t_,m = r;. Therefore, m = t,r; which is a glide reflection. O

Indeed, let O(2,R) be the subgroup of motions that fix the origin.
Then O(2,R) is generated by {pg,r}. Let M be the groups of plane
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rigid motions, then there is a group action M x R? — R2. The orbit
of 0 is the whole R? and the stabilizer of 0 is O(2,R).

For readers who want to know more about symmetry, we refer [Artin],
Chapter 5.

2.7. abelian groups. In this section, we are going to study a simple
but important category of groups, the abelian groups.

Given an abelian group G, we usually use + to denote the operation.
We say that G can be generated by X C G, denoted G =< X >, if
every element of G can be written as »_ n;x; for some n; € Z and
x; € X. Note that n; # 0 for all but finitely many .

A basis of an abelian group G is a linearly independent generating
subset X. That is for distinct z1, ...,z € X, > n;z; = 0 implies that
n; for all 7.

An abelian group with a basis is called a free abelian group. And
the rank, denoted rk(F), is | X|.

It’s easy to prove that an abelian group is free if and only if it’s a
direct sum of Z.

On the other hand, given a set X, we can always construct a free
abelian group on the set X by consider the set

F = {Z n.z|lx € X,n, € Z,n, = 0 for all but finitely many x}.

The group operation on F' is nothing but Y “n,z + > m,z := > (n, +
m,)x. It’s clear that X is a basis of F' in this construction.

Example 2.7.1.

This construction appeared, for example, in algebraic topology. The
groups of 1-chains is the free abelian group on the set of simplicial
1-chains. U

Example 2.7.2.

Let X be a Riemann surface, then the group of divisors, Div(X), is
the free abelian group on the set X. U
It has the following universal property:

Proposition 2.7.3. Let I’ be a free abelian group with basis X. For
any function f : X — G to an abelian group G. There exist a unique
homomorphism ¢ : F — G extending f.

Proof. Let o(> n,x) = > n,f(z), then verify it. O

Corollary 2.7.4. Every abelian group is a quotient of a free abelian
group.

Proof. LetG be an abelian group. Let F' be the free abelian group
on the set G. Consider f : G — G the identity map. Then we are
done. 0
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Example 2.7.5.

Q can be describe as following. Let X = {xy,...,2,,...} and F the
free abelian group on the set X. Take f: X — Q by f(z;) = 1. Then
Q is a quotient of F'. O

We are now ready to state develop to main theorem of this section.
We need the following;:

Lemma 2.7.6. If {z1,...,x,} is a basis of F, then {x1,...,x;_1,%; +
ATi, Tjt1, ..y T} 15 also a basis of F' fori# j and a € Z.

Theorem 2.7.7. Let F' be a free abelian group of rank n and G s a
non-zero subgroup of F, then there exists a basis {x1,....,x,} of F, an
integer v (1 < r < n) and positive integer dy, ..., d, such that dy|ds]|...|d,
and G is free abelian group with basis {dyxy, ..., d,x, }.

Sketch. If n =1, this is easy.

By induction, we assume that the theorem is true for all abelian
groups of rank <n — 1. Let

S :={s € Zlsy1 + ...knyn € G, for some basis of F',yy,...,yn}.

Let d; be the smallest positive integer in S. By changing basis, we
may have {z1, s, ...,y } basis of F and d;x; € G.

Let H =<y, ...,y, >. It’s clear that F' = H & Zx,. We claim that
G=(HNG) P ZLdyz.

Apply induction hypothesis to G N H < H, then we are done. U

Corollary 2.7.8 (fundamental theorem of finitely generated abelian
groups). Let G be a finitely generated abelian group. Then there exist
an integer r and positive integers di|ds|...|d; such that

G204 @ ... BLg ®L .

Proof. Let X be a finite generating set of G. And let F' be the free
abelian group on the set X. Then there is a surjective homomorphism
F — G. Apply Theorem 2.7.7 to ker < F. O

Now we restrict ourselves to finite abelian groups. Let GG be a finite
abelian group, by Corollary 2.7.8,

GT7y ®...8 Ly,

These dy, ...,d; are called invariant factors. We consider the factor-
ization of d; into prime factors, then we have for all 7,

a; 1 Qi k

di = p," ..pg
By Chinese Remainder Theorem, we have for all ¢,
Zdi = prllm Ph... P Zp:zk

Therefore,
G= @§:1(@§:1Zp‘?w ).
J
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It’s clear that @lezpei,j is the Sylow p;-subgroup. And these p?i’j are
J

called elementary divisors.

Example 2.7.9.

Let G = Z100®Z4o. By Chinese Remainder Theorem, Zgg = Z4®Zos
and Z40 = Zg D Z5. Thus

G=Z7yDZg® Ly ® Los = Loy D Zoo-

So invariant factors are 20,200 and elementary divisors are 4,8, 5, 25.

U
Example 2.7.10.
Let G = Zy, ® Z,. Then invariant factors are (m,n),[m,n|, the ged

and lem of m,n. O
Let G be an abelian group, there there is a natural important ho-
momorphism m : G — G by m(z) := ma for m € N. The image is

denoted mG and kernel is denoted G[m]. Let G(p) = {u € Glo(u) =
p™ for some n > 0}. One can show that G(p) is the Sylow p-subgroup
of G. And G is a direct sum of Sylow subgroups. Thus it remains
to study finite abelian p-groups. The only non-trivial part of classical
theory is showing that a finite abelian p-group is a direct sum of cyclic

p-groups.



