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2.6. symmetry of the plane. A map from plane itself is called a
rigid motion, or an isometry, if it is distance-preserving. Let S be
a subset of the plane. Then the subgroups of rigid motions preserving
S is called the symmetry of S. It’s well-known that:

Example 2.6.1.

Let S be the regular n-gon centered at the origin. Then the symme-
try of S id the group D2n. ¤

In order to build this is a more solid foundation, we need to work a
little bit more.

A list of rigid motions consists of:
1. Orientation-preserving motions:
a. Translation.
b. Rotation.
2. Orientation-reversing motions:
a. Reflection.
b. Glide reflection, i.e. reflecting about a line l and then translating
by a non-zero vector a parallel to l.

Theorem 2.6.2. The above list is complete.

Sketch. We first fix some notations:
ta: translation by a vector a.
ρθ: rotation by an angle θ about the origin.
r: reflection about the x-axis.

Step 1. Orientation preserving motions that fix the origin are {ρθ}.
Step 2. Let m ne an orientation preserving motion. If m(o) = a, then
t−am = ρθ for some θ. by Step 1. Thus m = taρθ.
Step 3. If m is not a translation, i.e. θ 6= 0, then m is a rotation about
a point p. To see this, first show that m has a fixed point, denoted p,
if θ 6= 0. A point on the plane can be written as p + x,

m(p+x) = taρθ(p+x) = ρθ(p+x)+ a = ρθ(p)+ ρθ(x)+ a = p+ ρθ(x).

Step 4. Orientation reversing motions that fix the origin are {ρθr}.
For given such m, it’s clear that rm preserves the orientation and fixes
the origin. So rm = ρθ for some θ. Thus m = rρθ = ρ−θr. Also note
that ρθr is the reflection about l, denoted rl, which is the line obtained
by rotating x-axis by 1

2
θ.

Step 5. Let m be an orientation reversing motion. Then m(o) = a for
some a. Thus t−am is an orientation reversing motion that fixes origin,
hence t−am = rl. Therefore, m = tarl which is a glide reflection. ¤

Indeed, let O(2,R) be the subgroup of motions that fix the origin.
Then O(2,R) is generated by {ρθ, r}. Let M be the groups of plane
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rigid motions, then there is a group action M × R2 → R2. The orbit
of o is the whole R2 and the stabilizer of o is O(2,R).

For readers who want to know more about symmetry, we refer [Artin],
Chapter 5.

2.7. abelian groups. In this section, we are going to study a simple
but important category of groups, the abelian groups.

Given an abelian group G, we usually use + to denote the operation.
We say that G can be generated by X ⊂ G, denoted G =< X >, if
every element of G can be written as

∑
nixi for some ni ∈ Z and

xi ∈ X. Note that ni 6= 0 for all but finitely many i.
A basis of an abelian group G is a linearly independent generating

subset X. That is for distinct x1, ..., xk ∈ X,
∑

nixi = 0 implies that
ni for all i.

An abelian group with a basis is called a free abelian group. And
the rank, denoted rk(F ), is |X|.

It’s easy to prove that an abelian group is free if and only if it’s a
direct sum of Z.

On the other hand, given a set X, we can always construct a free
abelian group on the set X by consider the set

F := {
∑

nxx|x ∈ X,nx ∈ Z, nx = 0 for all but finitely many x}.
The group operation on F is nothing but

∑
nxx +

∑
mxx :=

∑
(nx +

mx)x. It’s clear that X is a basis of F in this construction.

Example 2.7.1.

This construction appeared, for example, in algebraic topology. The
groups of 1-chains is the free abelian group on the set of simplicial
1-chains. ¤
Example 2.7.2.

Let X be a Riemann surface, then the group of divisors, Div(X), is
the free abelian group on the set X. ¤

It has the following universal property:

Proposition 2.7.3. Let F be a free abelian group with basis X. For
any function f : X → G to an abelian group G. There exist a unique
homomorphism ϕ : F → G extending f .

Proof. Let ϕ(
∑

nxx) =
∑

nxf(x), then verify it. ¤
Corollary 2.7.4. Every abelian group is a quotient of a free abelian
group.

Proof. LetG be an abelian group. Let F be the free abelian group
on the set G. Consider f : G → G the identity map. Then we are
done. ¤
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Example 2.7.5.

Q can be describe as following. Let X = {x1, ..., xn, ...} and F the
free abelian group on the set X. Take f : X → Q by f(xi) = 1

i
. Then

Q is a quotient of F . ¤
We are now ready to state develop to main theorem of this section.

We need the following:

Lemma 2.7.6. If {x1, ..., xn} is a basis of F , then {x1, ..., xj−1, xj +
axi, xj+1, ..., xn} is also a basis of F for i 6= j and a ∈ Z.

Theorem 2.7.7. Let F be a free abelian group of rank n and G is a
non-zero subgroup of F , then there exists a basis {x1, ...., xn} of F , an
integer r (1 ≤ r ≤ n) and positive integer d1, ..., dr such that d1|d2|...|dr

and G is free abelian group with basis {d1x1, ..., drxr}.
Sketch. If n = 1, this is easy.

By induction, we assume that the theorem is true for all abelian
groups of rank ≤ n− 1. Let

S := {s ∈ Z|sy1 + ...knyn ∈ G, for some basis of F , y1, ..., yn}.
Let d1 be the smallest positive integer in S. By changing basis, we

may have {x1, y2, ..., yn} basis of F and d1x1 ∈ G.
Let H =< y2, ..., yn >. It’s clear that F = H ⊕ Zx1. We claim that

G = (H ∩G)⊕ Zd1x1.
Apply induction hypothesis to G ∩H < H, then we are done. ¤

Corollary 2.7.8 (fundamental theorem of finitely generated abelian
groups). Let G be a finitely generated abelian group. Then there exist
an integer r and positive integers d1|d2|...|dt such that

G ∼= Zd1 ⊕ ...⊕ Zdt ⊕ Zr.

Proof. Let X be a finite generating set of G. And let F be the free
abelian group on the set X. Then there is a surjective homomorphism
F → G. Apply Theorem 2.7.7 to ker < F . ¤

Now we restrict ourselves to finite abelian groups. Let G be a finite
abelian group, by Corollary 2.7.8,

G ∼= Zd1 ⊕ ...⊕ Zdt .

These d1, ..., dt are called invariant factors. We consider the factor-
ization of di into prime factors, then we have for all i,

di = p
ai,1

1 ...p
ai,k

k .

By Chinese Remainder Theorem, we have for all i,

Zdi
∼= Zp

ai,1
1

⊕ ...⊕ Z
p

ai,k
k

.

Therefore,
G ∼= ⊕k

j=1(⊕t
i=1Zp

ai,j
j

).
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It’s clear that ⊕t
i=1Zp

ai,j
j

is the Sylow pj-subgroup. And these p
ai,j

j are

called elementary divisors.

Example 2.7.9.

Let G = Z100⊕Z40. By Chinese Remainder Theorem, Z100
∼= Z4⊕Z25

and Z40
∼= Z8 ⊕ Z5. Thus

G ∼= Z4 ⊕ Z8 ⊕ Z5 ⊕ Z25
∼= Z20 ⊕ Z200.

So invariant factors are 20, 200 and elementary divisors are 4, 8, 5, 25.
¤

Example 2.7.10.

Let G = Zm ⊕ Zn. Then invariant factors are (m,n), [m,n], the gcd
and lcm of m,n. ¤

Let G be an abelian group, there there is a natural important ho-
momorphism m : G → G by m(x) := mx for m ∈ N. The image is
denoted mG and kernel is denoted G[m]. Let G(p) = {u ∈ G|o(u) =
pn for some n ≥ 0}. One can show that G(p) is the Sylow p-subgroup
of G. And G is a direct sum of Sylow subgroups. Thus it remains
to study finite abelian p-groups. The only non-trivial part of classical
theory is showing that a finite abelian p-group is a direct sum of cyclic
p-groups.


