
4

Sep. 22, 2006 (Fri.)

2. Group Theory

The concept of groups is a very fundamental one in Mathematics.
It arise as automorphism of certain sets. For example, some geometry
can be described as the groups acting on the geometric objects.

In the first section, we are going to recall some definition and basic
properties of groups in general. In the second section, we introduce
the acting of groups. The groups action can find many applications in
geometry, algebra, and the theory of groups itself. In the third section,
we are would like to take care of various aspects of reducing or factoring
groups into simple ones.

2.1. Basic group theory.

Definition 2.1.1. A group G is a set together with a binary operation
◦ : G×G → G satisfying:

(1) there is an e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.
(2) for all g ∈ G, there is an g−1 ∈ G such that g◦g−1 = g−1◦g = e
(3) for all g1, g2, g3 ∈ G, we have (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

A group is said to be abelian if x ◦ y = y ◦ x for all x, y ∈ G.

For simplicity, we will denote xy for x ◦ y.

A subset H ⊂ G is a subgroup if H is a group by using the binary
operation of G, denoted H < G.

A group homomorphism f : G → H is a function between groups
that respects the structure of groups. That is, a function satisfying
f(xy) = f(x)f(y).
The kernel of f , denote ker(f), is defined to be {x ∈ G|f(x) = eH}.

A subgroup H < G is said to be normal if gHg−1 = H for all g ∈ G,
denoted H CG. Given a subgroup H < G, we note G/H the set of left
cosets, i.e. G/H = {gH|g ∈ G}. When H C G is normal, then G/H
has induced group structure given by xH ◦ yH := xyH. This is called
the quotient group.

We remark that a subgroup is normal if and only if it is the kernel
of some homomorphism. The following lemma is useful

Lemma 2.1.2. Let f : G → H be a group homomorphism. Let N be
a normal subgroup of G contained in ker(f), then there is an induced
homomorphism f̄ : G/N → H.

Proof. Define f̄ : G/N → H by f̄(gN) = f(g). Then it’s routine to
verify it’s well-defined and it’s a group homomorphism. ¤

Regarding group homomorphisms, there are some useful facts:
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Theorem 2.1.3 (First isomorphism theorem). Let f : G → H be
a group homomorphism, then there is an induced isomorphism f̄ :
G/ ker(f) ∼= im(f).
In particular, if f is surjective, then f̄ : G/ ker(f) ∼= H.

Proof. Define f̄ : G/ ker(f) → H by f̄(g ker(f)) = f(g). Then it’s
routine to verify it’s well-defined and it’s a injective group homomor-
phism. ¤
Example 2.1.4. Let G be the set of all maps Ta,b : R → R such that
Ta,b(x) = ax + b with a 6= 0. Then G is a group under composition.
There are two natural subgroups:
A := {Ta,0} ∼= R∗, the multiplication group.
N := {T1,b} ∼= R, the translation group.
There is a group homomorphism f : G → R∗ by f(Ta,b) = a. Its kernel
is N , which is a normal subgroup of G. So we have G/N ∼= A.
Moreover, G = NA = AN and N ∩ A = {e}. So in fact G is the
semidirect product of A and N .

Theorem 2.1.5 (Second isomorphism theorem). Let H, K be sub-
groups of G. Then we have group isomorphism

H/(H ∩K) ∼= HK/K,

when
1. H < NG(K) or especially,
2. K C G.

Sketch. Recall that NG(K) := {x ∈ G|xKx−1 = K} denotes the nor-
malizer of K in G. It is the maximal subgroup of G in which K is
normal. In particular KCNG(K). So KCG if and only if G = NG(K).

Also one can check that if H < NG(K), then HK = KH < NG(K)
is a subgroup of G. Moreover, K C HK.

On the other hand, if H < NG(K), then H ∩ K C H. Thus both
sides are groups.

Finally, we consider f : H → HK/K by f(h) = hK. It’s easy to
check that f is surjective with kernel H ∩ K. By first isomorphism
theorem, we proved (1). And (2) is just a special case of (1). ¤

Given a surjective homomorphism f : G → H, by First isomorphism
theorem, H ∼= G/N where N = ker(f) is a normal subgroup. It’s
natural to study the group structures between them. It’s easy to see
that there is a map

{K < G/N} f−1→ {L < G|N < L}.
In fact, this map is bijective. Moreover, it sends normal subgroups to
normal subgroups.
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Theorem 2.1.6 (Third isomorphism theorem). Given N CG and K C
G containing N . Then K/N C G/N . Moreover, (G/N)/(K/N) ∼=
G/K.

Sketch. It’s easy to check that K/N C G/N by definition.
In fact, we consider f : G → G/K. Since N C G and N is contained
in ker(F ) = K, by Lemma 2.1.2, we have an induced map f̄ : G/N →
G/K which is clearly surjective. One checks that ker(ḡ) = K/N and
we are done by Themreom 2.1.3. ¤
2.2. cyclic groups.
Among all groups, perhaps simplest ones are cyclic groups. Let G be
a group. We say that G is cyclic if there is an element x ∈ G such that
every element g ∈ G can be written as xn for some n ∈ Z.

It’s clear that Z under addition is a cyclic group. By the definition,
given a cyclic group G, there is a surjective map f : Z→ G, by n 7→ xn.
This is indeed a group homomorphism. Therefore, by Theorem 2.1.3,
G ∼= Z/ ker(f).

The reader should find no difficulty showing that subgroups of Z is
either {0} or of the form nZ. Since Z is abelian, every subgroup is
normal.

Turning back to the discussion of cyclic groups. There are two cases:
1. ker(f) = 0. Then G ∼= Z. This is called an infinite cyclic group.
2. ker(f) = nZ. Then G ∼= Z/nZ. This is called a cyclic group of order
n, denoted Zn.

There list some properties and leave the proof for the readers.

Proposition 2.2.1. Let G be a cyclic group.
1. Every subgroup is cyclic.
2. Homomorphic image of G is cyclic.
3. If G is a cyclic group of order n, for all d|n there exist a subgroup
of order d.
4. If G is a cyclic group of order n with a generator x, then the set of
generators consist of {xt|(t, n) = 1}.


