Jan. 5, 2007

4.3. complexes, exact sequences. .

Definition 4.3.1. By a short exact sequence, we mean an exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$.

Example 4.3.2.

1. Let A, B be abelian groups, then we have exact sequence:

 $0 \to A \xrightarrow{\imath_A} A \oplus B \xrightarrow{p_B} B \to 0.$

2. Let $A \triangleleft B$ be abelain groups, then we have exact sequence:

$$0 \to A \to B \to B/A \to 0.$$

3. Let $\varphi: B \to C$ be a surjective homomorphism, then we have exact sequence:

$$0 \to \ker(\varphi) \to B \to C \to 0.$$

Given a long exact sequence $K^{\bullet} = (K^i, d_i)$, it can be decomposed into short exact sequences

$$0 \to \ker(d^i) = \operatorname{im}(d^{i-1}) \to K^i \to \operatorname{im}(d^i) = \ker(d^{i+1}) \to 0.$$

Therefore, short exact sequences play the most important role in our studies.

Given a morphism $\phi \in \text{Hom}(K^{\bullet}, L^{\bullet})$ of complexes, one can define its kernel, image, cokernel, in a natural way. Thus we can formulate a new category $Kom(\mathcal{A})$, whose objects are complexes over \mathcal{A} and morphisms are morphism of complexes.

Exercise 4.3.3. $Kom(\mathcal{A})$ is an abelian category in which \mathcal{A} is a subcategory.

Let K^{\bullet} be a complex. We let $Z^i := \ker(d^i)$, called the *i*-th cocycle and $B^i := \operatorname{im}(d^{i-1})$, called the *i*-th coboundary. Then $H^i(K^{\bullet}) := Z^i/B^i$ is called the *i*-th cohomology of K^{\bullet} . Cohomology can be viewed as a tool detecting the non-exactness of complexes.

Given two complexes K^{\bullet} , L^{\bullet} , a morphism of complexes $\phi \in Hom_{\mathcal{A}}(K^{\bullet}, L^{\bullet})$ consists of morphisms $\phi^i : K^i \to L^i$ such that $\phi^{i+1} \circ d^i_K = d^i_L \circ \phi^i$ for all *i*. Another way to put it is the following diagram commute:

One can easily checked that there is an induced map $H^i(\phi) : H^i(K^{\bullet}) \to H^i(L^{\bullet})$ for all *i*. Moreover, if ϕ, ψ are morphism of complexes, then $H^i(\psi) \circ H^i(\phi) = H^i(\psi \circ \phi)$ for all *i* whenever it make sense.

Before we move on, we discuss the following useful lemmas:

Lemma 4.3.4 (Snake Lemma). Given a diagram

with each rows are exact. Then there is a well-defined map $\delta : \ker(d'') \to \operatorname{coker}(d')$ such that we have an exact sequence

$$\ker(d') \xrightarrow{f} \ker(d) \to \ker(d'') \xrightarrow{\delta} \operatorname{coker}(d') \to \operatorname{coker}(d) \xrightarrow{\bar{g}} \operatorname{coker}(d'').$$

If moreover that $f : A' \to A$ is injective, then $f : \ker(d') \to \ker(d)$ is injective. And if $g : B \to B''$ is surjective, then $\overline{g} : \operatorname{coker}(d) \to \operatorname{coker}(d'')$ is surjective.

Proof. The proof consists of various diagram chasing. We leave it to the reader. \Box

Corollary 4.3.5. Keep the notation as above. If both d', d'' are injective (resp. surjective) then so is d.

Assume that f is injective and g is surjective. If any two of d', d, d'' are isomorphism. So is the third one.

Lemma 4.3.6 (Five Lemma). Given a diagram

with each rows are exact.

If d_1 is surjective (resp. injective) and d_2, d_4 are injective (resp. surjective), then d_3 is injective (resp. surjective).

In particular, if d_1, d_2, d_4, d_5 are isomorphic, then so is d_3 .

Proof. Decompose the sequence into short exact sequences.

An immediate application is the following:

Proposition 4.3.7. Given an exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the following are equivalent:

- (1) there is $h: C \to B$ such that $gh = \mathbf{1}_C$.
- (2) there is $l: B \to A$ such that $lf = \mathbf{1}_A$.
- (3) the sequence is isomorphic to $0 \to A \xrightarrow{i_A} A \oplus C \xrightarrow{p_C} C \to 0$.

Such sequence is called **split**.

If the sequence split, then in particular, $B \cong A \oplus C$.

Proof. Given $h: C \to B$, we can construct the following commutative diagram:

By Five Lemma, $fp_A + hp_C$ is an isomorphism. Hence those two sequences are isomorphic.

On the other hand, if the two sequence are isomorphic. That is we have the following commutative diagram, which is invertible:

Theorem 4.3.8. Given a short exact of complexes, then it induces a long exact sequences of cohomology.

Proof. This can be proved directly, or by Snake Lemma.

We briefly sketch the proof by using Snake Lemma here. First look at the diagram

Then we have exact sequence $A^i/B^i(A^{\bullet}) \to B^i/B^i(B^{\bullet}) \to C^i/B^i(C^{\bullet}) \to 0$ by looking at cokernel of the maps.

Next we look at the diagram

Then we have exact sequence $0 \to Z^{i+1}(A^{\bullet}) \to Z^{i+1}(B^{\bullet}) \to Z^{i+1}(C^{\bullet})$ by looking at kernels.

These two exact sequences fit into a commutative diagram

One can check that $\ker(\bar{d}_A^i) = H^i(A^{\bullet})$ and $\operatorname{coker}(\bar{d}_A^i) = H^{i+1}(A^{\bullet})$. And similarly for B^{\bullet} and C^{\bullet} . Hence by Snake Lemma, we are done. \Box

76

Definition 4.3.9. Let $F : \mathcal{A} \to \mathcal{B}$ be a functor between two abelian categories. We say that F is **exact** if for an exact sequence K^{\bullet} over over \mathcal{A} , $F(K^{\bullet})$ is exact over \mathcal{B} .

Exercise 4.3.10. Show that F is exact if and only if for any short exact sequence $0 \to A \to B \to C \to 0$ in \mathcal{A} , the induced sequence $0 \to F(A) \to F(B) \to F(C) \to 0$ is exact in \mathcal{B} .

Definition 4.3.11. Keep the notation as above. We say that F is leftexact (resp. right-exact) if for any short exact sequence $0 \to A \to B \to C \to 0$ in \mathcal{A} , the induced sequence $0 \to F(A) \to F(B) \to F(C)$ (resp. $F(A) \to F(B) \to F(C) \to 0$) is exact in \mathcal{B} .

Unfortunately, most natural functors are left-exact (or right-exact) but not exact. We list some of them:

Example 4.3.12.

Let X be a topological space. Let Sh_X be the category of sheaves on X, which is an abelian category. The global section functor $\Gamma(X, \cdot)$: $Sh_X \to Ab$ is left exact but not exact.

Example 4.3.13.

Let Ab be the category of abelian groups. Fixed $M \in Ab$, we consider $\operatorname{Hom}(M, \cdot) : Ab \to Ab$ by $A \mapsto \operatorname{Hom}(M, A)$. This is left-exact but nor right exact.