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4.3. complexes, exact sequences. .

Definition 4.3.1. By a short exact sequence, we mean an exact se-
quence 0 → A → B → C → 0.

Example 4.3.2.

1. Let A,B be abelian groups, then we have exact sequence:

0 → A
ıA→ A⊕B

pB→ B → 0.

2. Let A C B be abelain groups, then we have exact sequence:

0 → A → B → B/A → 0.

3. Let ϕ : B → C be a surjective homomorphism, then we have exact
sequence:

0 → ker(ϕ) → B → C → 0.

¤
Given a long exact sequence K• = (K i, di), it can be decomposed

into short exact sequences

0 → ker(di) = im(di−1) → K i → im(di) = ker(di+1) → 0.

Therefore, short exact sequences play the most important role in our
studies.

Given a morphism φ ∈ Hom(K•, L•) of complexes, one can define its
kernel, image, cokernel, in a natural way. Thus we can formulate a new
category Kom(A), whose objects are complexes over A and morphisms
are morphism of complexes.

Exercise 4.3.3. Kom(A) is an abelian category in which A is a sub-
category.

Let K• be a complex. We let Zi := ker(di), called the i-th cocycle
and Bi := im(di−1), called the i-th coboundary. Then H i(K•) :=
Zi/Bi is called the i-th cohomology of K•. Cohomology can be
viewed as a tool detecting the non-exactness of complexes.

Given two complexes K•, L•, a morphism of complexes φ ∈ HomA(K•, L•)
consists of morphisms φi : Ki → Li such that φi+1 ◦ di

K = di
L ◦ φi for

all i. Another way to put it is the following diagram commute:

−−−→ Ki
di

K−−−→ Ki+1 −−−→
φi

y φi+1

y

−−−→ Li
di

L−−−→ Li+1 −−−→
One can easily checked that there is an induced map H i(φ) : H i(K•) →

H i(L•) for all i. Moreover, if φ, ψ are morphism of complexes, then
H i(ψ) ◦H i(φ) = H i(ψ ◦ φ) for all i whenever it make sense.

Before we move on, we discuss the following useful lemmas:
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Lemma 4.3.4 (Snake Lemma). Given a diagram

A′ f−−−→ A −−−→ A′′ −−−→ 0

d′
y d

y d′′
y

0 −−−→ B′ −−−→ B
g−−−→ B′′

with each rows are exact. Then there is a well-defined map δ : ker(d′′) →
coker(d′) such that we have an exact sequence

ker(d′)
f→ ker(d) → ker(d′′)

δ→ coker(d′) → coker(d)
ḡ→ coker(d′′).

If moreover that f : A′ → A is injective, then f : ker(d′) → ker(d) is
injective. And if g : B → B′′ is surjective, then ḡ : coker(d)→coker(d′′)
is surjective.

Proof. The proof consists of various diagram chasing. We leave it to
the reader. ¤

Corollary 4.3.5. Keep the notation as above. If both d′, d′′ are injec-
tive (resp. surjective) then so is d.

Assume that f is injective and g is surjective. If any two of d′, d, d′′

are isomorphism. So is the third one.

Lemma 4.3.6 (Five Lemma). Given a diagram

A1 −−−→ A2 −−−→ A3 −−−→ A4 −−−→ A5

d1

y d2

y d3

y d4

y d5

y
B1 −−−→ B2 −−−→ B3 −−−→ B4 −−−→ b5

with each rows are exact.
If d1 is surjective (resp. injective) and d2, d4 are injective (resp.

surjective), then d3 is injective (resp. surjective).
In particular, if d1, d2, d4, d5 are isomorphic, then so is d3.

Proof. Decompose the sequence into short exact sequences. ¤

An immediate application is the following:

Proposition 4.3.7. Given an exact sequence 0 → A
f→ B

g→ C → 0,
the following are equivalent:

(1) there is h : C → B such that gh = 1C.
(2) there is l : B → A such that lf = 1A.

(3) the sequence is isomorphic to 0 → A
ıA→ A⊕ C

pC→ C → 0.

Such sequence is called split.
If the sequence split, then in particular, B ∼= A⊕ C.
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Proof. Given h : C → B, we can construct the following commutative
diagram:

0 −−−→ A
ıA−−−→ A⊕ C

pC−−−→ C −−−→ 0y 1A

y fpA+hpC

y 1C

y
y

0 −−−→ A
f−−−→ B

g−−−→ C −−−→ 0
By Five Lemma, fpA + hpC is an isomorphism. Hence those two se-
quences are isomorphic.

On the other hand, if the two sequence are isomorphic. That is we
have the following commutative diagram, which is invertible:

0 −−−→ A
ıA−−−→ A⊕ C

pC−−−→ C −−−→ 0

1A

y φ

y 1C

y
0 −−−→ A

f−−−→ B
g−−−→ C −−−→ 0

Let h = φ ◦ ıC : C → B, then gh = gφıC = 1CpCıC = 1C .
The proof for other equivalence is similar. ¤

Theorem 4.3.8. Given a short exact of complexes, then it induces a
long exact sequences of cohomology.

Proof. This can be proved directly, or by Snake Lemma.
We briefly sketch the proof by using Snake Lemma here.
First look at the diagram

0 −−−→ Ai−1 −−−→ Bi−1 −−−→ C i−1 −−−→ 0y
y

y
0 −−−→ Ai −−−→ Bi −−−→ Ci −−−→ 0

Then we have exact sequence Ai/Bi(A•) → Bi/Bi(B•) → Ci/Bi(C•) →
0 by looking at cokernel of the maps.

Next we look at the diagram

0 −−−→ Ai+1 −−−→ Bi+1 −−−→ C i+1 −−−→ 0y
y

y
0 −−−→ Ai+2 −−−→ Bi+2 −−−→ C i+2 −−−→ 0

Then we have exact sequence 0 → Zi+1(A•) → Zi+1(B•) → Zi+1(C•)
by looking at kernels.

These two exact sequences fit into a commutative diagram

Ai/Bi(A•) −−−→ Bi/Bi(B•) −−−→ Ci/Bi(C•) −−−→ 0

d̄i
A

y
y

y
0 −−−→ Zi+1(A•) −−−→ Zi+1(B•) −−−→ Zi+1(C•)

One can check that ker(d̄i
A) = H i(A•) and coker(d̄i

A) = H i+1(A•).
And similarly for B• and C•. Hence by Snake Lemma, we are done. ¤
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Definition 4.3.9. Let F : A → B be a functor between two abelian
categories. We say that F is exact if for an exact sequence K• over
over A, F (K•) is exact over B.

Exercise 4.3.10. Show that F is exact if and only if for any short
exact sequence 0 → A → B → C → 0 in A, the induced sequence
0 → F (A) → F (B) → F (C) → 0 is exact in B.

Definition 4.3.11. Keep the notation as above. We say that F is left-
exact (resp. right-exact) if for any short exact sequence 0 → A → B →
C → 0 in A, the induced sequence 0 → F (A) → F (B) → F (C) (resp.
F (A) → F (B) → F (C) → 0) is exact in B.

Unfortunately, most natural functors are left-exact (or right-exact)
but not exact. We list some of them:

Example 4.3.12.

Let X be a topological space. Let ShX be the category of sheaves on
X, which is an abelian category. The global section functor Γ(X, ·) :
ShX → Ab is left exact but not exact. ¤
Example 4.3.13.

Let Ab be the category of abelian groups. Fixed M ∈ Ab, we consider
Hom(M.·) : Ab → Ab by A 7→ Hom(M,A). This is left-exact but nor
right exact. ¤


