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The following theorem says that finitely generated purely transcen-
dental extension are just rational function fields.

Theorem 3.14.4. If {s1, ..., sn} ⊂ F is algebraically independent over
K. Then K(s1, ..., sn) ∼= K(x1, ..., xn).

Proof. We consider the homomorphism θ : K[x1, ..., xn] → K[s1, ..., sn].
θ is surjective by definition. It’s injective because {s1, ..., sn} ⊂ F is
algebraically independent. Then θ induces an isomorphism on quotient
fields. ¤

One notices that the notion of being algebraic independent is an
analogue of being linearly independent. Therefore, one can try to define
the notion of ”basis” and ”dimension” in a similar way.

Definition 3.14.5. S ⊂ F is said to be a transcendental basis of F/K
if S is a maximal algebraically independent set. In other words, for all
u ∈ F − S, S ∪ {u} is algebraically dependent.

We will then define the transcendental degree to be the cardinality of
a transcendental basis (in a analogue of dimension). In order to show
that this is well-defined. We need to work harder.

Proposition 3.14.6. Let S ⊂ F be an algebraically independent set
over K and u ∈ F −K(S). Then S ∪ {u} is algebraically independent
if and only if u is transcendental over K(S).

Proof. The proof is straightforward. ¤
Corollary 3.14.7. S is a transcendental basis of F/K if and only if
F/K(S) is algebraic.

Proof. Suppose that S is a transcendental basis of F/K. If u ∈ F −
K(S), then S ∪ {u} is not algebraically independent. Thus, u is alge-
braic over K(S) by the Proposition.

On the other hand, suppose that F/K(S) is algebraic. Then for all
u ∈ F − S, u is algebraic over K(S). By the Proposition, S ∪ {u}
is algebraically dependent if u ∈ F − K(S). In fact, it’s easy to see
directly that S ∪ {u} is algebraically dependent if u ∈ K(S). Thus S
is a maximal algebraically independent set. ¤
Corollary 3.14.8. Let S ⊂ F be an subset over such that F/K(S) is
algebraic. Then S contains a transcendental basis.

Proof. By Zorn’s Lemma, there exists a maximal algebraically inde-
pendent subset S ′ ⊂ S. Then K(S) is algebraic over K(S ′) and hence
F is algebraic over K(S ′). ¤
Theorem 3.14.9. Let S, T be transcendental bases of F/K. If S is
finite, then |T | = |S|.
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Proof. Let S = {s1, ..., sn} and S ′ := {s2, ..., sn}. We first claim that
there is an element t ∈ T , say t = t1 such that {t1, s2, ..., sn} is a
transcendental basis.

to see this, if every element of T is algebraic over K(S ′), then F is
algebraic over K(T ) hence over K(S ′) which is a contradiction. Thus,
there is an element t ∈ T , say t = t1 such that t1 is transcendental over
K(S ′). And hence T ′ := {t1, s2, ..., sn} is algebraically independent.

By the maximality of S, one sees that s1 is algebraic over K(T ′).
It follows that F is algebraic over K(t1, s1, ..., sn) and hence algebraic
over K(T ′). Therefore, T ′ is a transcendental basis.

By induction, one sees that there is a transcendental basis {t1, ..., tn} ⊂
T . Thus T = {t1, ..., tn}. ¤

Theorem 3.14.10. Let S, T be transcendental bases of F/K. If S is
infinite, then |T | = |S|.
Proof. By the previous theorem, we may assume that T is infinite as
well.

For s ∈ S, we have s ∈ F hence algebraic over K(T ). Let Ts ⊂ T be
the subset of T of elements that appearing in the minimal polynomial
of s. It’s clear that Ts 6= ∅ otherwise, s is algebraic K which is not the
case. Also note that Ts is finite.

Let T ′ := ∪s∈STs. We claim that T ′ = T . To this end, one sees that
for u ∈ F , u is algebraic over K(S) and hence algebraic over K(T ′).
Thus F/K(T ′) is algebraic. T is a transcendental basis, hence T = T ′.

Lastly, one sees that

|T | = |T ′| = | ∪s∈S Ts| ≤ |S| · ℵ0 = |S|.
Replace S by T , one has |S| ≤ |T |. We are done. ¤

With these two theorem, we can define the transcendental degree of
an extension. And the definition is independent of choices of basis.

Definition 3.14.11. Let F/K be an extension and S be a transcen-
dental basis. We define the transcendental degree of F/K, denoted
tr.d.F/K, to be |S|.
Theorem 3.14.12. Let F/E and E/K be extensions. Then

tr.d.F/K = tr.d.F/E + tr.d.E/K.

Proof. Let T be a transcendental basis of F/E and S be a transcen-
dental basis of E/K. We would like to show that S ∪ T is a transcen-
dental basis of F/K. Note that T ∩ E = ∅, hence S ∩ T = ∅. Thus
|S ∪ T | = |S|+ |T |, and we are done.

To see the claim, it’s easy to check that E(T ) = EK(S ∪ T ). Hence
E(T )/K(S ∪ T ) is algebraic if E/K(S) is algebraic. Also, F/E(T ) is
algebraic, therefore, F/K(S ∪ T ) is algebraic.
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It suffices to show that S ∪ T is algebraically independent. Suppose
that there is f(x1, ..., xn, y1, ..., ym) such that f(s1, ..., sn, t1, ..., tm) = 0.
We can write

f(x1, ..., xn, y1, ..., ym) =
∑

I

hI(x1, ..., xn)yI ,

and we have
∑

I hI(s1, ..., sn)tI . Since T is algebraically independent
over E 3 hI(s1, ..., sn). It follows that hI(s1, ..., sn) = 0 for all I. Since
S is algebraically independent over K, if follows that hI(x1, ..., xn) =
0 ∈ K[x1, ..., xn] for all I. Therefore f(x1, ..., xn, y1, ..., ym) = 0. Hence
S ∪ T is algebraically independent. ¤
Example 3.14.13.

Let V := {(a, b)|a3 = b2, a, b ∈ K}. Then ”polynomial function on V
can be described as R := K[x, y]/(y2−x3). And rational functions on V
is nothing but the field of quotient of R, denoted F . Then tr.d.KF = 1,
which is the same as the ”dimension of V ”. ¤

Some related problems:
1. Lüroth’s theorem and rationality problem.
The Lüroth’s theorem states that a non-trivial subfield of k(x) is of
the form k(t), where t ∈ K(x). More generally, one can ask a subfield
E ⊂ K(x, y) of tr.dK = 2 is purely transcendental or not. One can
prove that this is true when K = C by geometric method. However,
this is not true in general when transcendental degree is higher.

Nevertheless, suppose that there is a finite group G acts on k(x1, ..., xn).
One can ask whether the subfield of invariant purely transcendental or
not. Or under what condition, the field of invariant is purely transcen-
dental. A variety (as V above) is called rational if its rational function
field is purely transcendental. So this is called rationality problem.
2. Automorphism of function fields.
Consider F = K(x). It’s well-known that AutK(F ) = PGL(2, K).
How about K-automorphism F = K(x1, ..., xn)?
3. Characterize birational invariants.
Varieties as said to be birational if their function fields are isomor-
phic. Therefore, those birational invariant, which reflect the birational
geometry of varieties, are invariant of fields. Can you read it from the
fields?



70

4. Homological Algebra

Some useful references:
Serge Lang,Algebra, GTM 211, Springer
S. Gelfand, Y. Manin, Methods of homological algebra, Springer
David Eisenbud, Commutative algebra, GTM 150, Springer

4.1. categories and functors. In this section, we are going to define
some basic notions.

Definition 4.1.1. A category is a class C of objects, denoted A,B, C, ...,
etc., together with

(1) a class of disjoint set, denoted HomC(A, B), called morphism
and

(2) for each triple (A,B, C) of objects a function Hom(B, C) ×
Hom(A,B) → Hom(A,C), called the composition subjects to
(a) h ◦ (g ◦ f) = (h ◦ g) ◦ f .
(b) for each object A ∈ C, there exists 1A ∈ Hom(A,A) such

that 1A ◦ f = f, f ◦ 1A = f .

Example 4.1.2.

(1) The category of Sets, denoted Set .
(2) The category of groups, denoted Gp, is a subcategory of Set .
(3) The category of abelian groups, denoted Ab, is a subcategory

of Gp.

Definition 4.1.3. Let C,D be categories. A covariant functor (resp.
contravariant functor) F of C to D is a rule which to each object A ∈ C
associate an object F (A) ∈ D, and to each morphism f : A → B
associate a morphism F (f) : F (A) → F (B) (resp. F (f) : F (B) →
F (A)) such that:

(1) F (1A) = 1F (A).
(2) F (g ◦ f) = F (g) ◦ F (f) (resp. F (g ◦ f) = F (f) ◦ F (g)).

There are many cases we met the universal property. This can be
seen via the universal object in a suitable category.

Definition 4.1.4. In a category C, an object P is said to be universally
attracting (resp. repelling) if Hom(A,P ) (resp. Hom(P, A)) has only
one element for all A ∈ C.
Example 4.1.5.

The group of one element is the universally repelling and attracting
object in Gp.

Example 4.1.6.
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Fixed a set S. Let C be the category of maps form S to abelian
groups. The free abelian group is the universally repelling object.

Similarly, if we consider the category of maps from S to groups. Then
we get free group by considering the universal repelling object. ¤
Example 4.1.7.

In a category C, the product of A,B can be defined as (P, f, g) con-
sisting of an object P and f : P → A, g : P → B such that for any
(C, s, t), there exist a unique h : C → P , which makes the diagram
commute.

In other words, let D be the category of the triple (C, s, t), then P
is nothing but the universal attracting object. ¤

We now formulate the axioms of additive category and abelian
category.

A1. Hom(A,B) is an abelian group. And composition is bilinear.
A2. There exist a zero object 0, i.e. such that Hom(0, A), Hom(A, 0)

has precisely one element.
A3. Finite direct sum and finite direct product exist. In other

words, for A1, A2 ∈ C, there exist an object C ∈ C and pi : C → Ai,
ıi : Ai → C such that piıi = 1Ai

, piıj = 0 if i 6= j, ı1p1 + ı2p2 = 1C .
A4. For any morphism f : A → B, there exist a sequence, called a

canonical decomposition

K
k→ A

ı→ I
→ B

c→ K ′

such that

(1)  ◦ ı = f
(2) K is the kernel of f and K ′ is the cokernel of f .
(3) I is cokernel of k and kernel of c.

In the above canonical decomposition, K can be viewed as kernel, I
as the image and K ′ as the cokernel.

Definition 4.1.8. A category satisfying A1, A2, A3 is called an addi-
tive category. An additive category satisfying A4 is called an abelian
category.

Remark 4.1.9. The kernel and cokernel should be defined abstractly.
For example, given A ∈ C, one can define a functor hA : C◦ → Set
such that hA(C) = Hom(C, A). A functor F is representable by B
is F ∼= hB.

In an additive categoty C, for a morphism f : A → B, one can
define a kernel functor Ker(f) : C◦ → Ab such that Ker(f)(C) =
Ker(hA(C) → hB(C)).

We say that kernel of f exists if the functor Ker(f) is representable.
Cokernel can be defined similarly but a little bit subtle. It’s ker(f ◦)◦.

Example 4.1.10.
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The followings are abelian categories:

(1) Ab.
(2) category of R-modules, where R is a ring.
(3) category of finite dimensional vector space over k.
(4) category of sheaves of abelian groups over a topological space.

¤

4.2. complexes, examples of homology and cohomology groups.
There are various situation where we need to consider a sequence of
abelian group. This is basically why homological algebra arise.

Definition 4.2.1. Let A be an abelian category. A comlpex K• =
(Ki, di)i∈Z consists of Ki ∈ A, di : Ki → Ki+1 such that di+1di = 0 for
all i.

A complex is said to be exact if ker(di+1) = im(di).

Example 4.2.2 (Homology of simplicial complex).

Given a simplicial complex X, we can view it as ∪Xn, where Xn

denotes the n-skeleton. To each n, we attach a free abelian Cn on
n-simlpex. Note that there is a natural boundary map ∂n from a n-
complex to (n− 1)− complex. Note that one need to handle signs by
considering the orientation. It follows that ∂ ◦ ∂ = 0. Hence we have a
complex of free abelian groups (Cn, ∂).

The homology can be considered as the obstruction of this complex
being exactness. That is, Hi(X,Z) := ker(∂n)/im(∂n−1).

For example, the homology of S2 can be realized by

0 → Z[f ] → Z[e1]⊕ Z[e2] → Z[x1]⊕ Z[x2]⊕ Z[x3] → 0.

And ∂[f ] = [e1] + [e2] − [e2] − [e1], ∂[e1] = [x2] − [x1], ∂[e2] = [x3] −
[x2], ∂[xi] = 0. Therefore, H2(S

2) ∼= Z, H1
∼= 0, H0

∼= Z. ¤

Exercise 4.2.3. compute the homology of Sn,RP2, T 2 and Klein bottle.

Example 4.2.4.

[differential forms, De Rham complex and cohomology] Let X be
a differentiable manifold, e.g Rn. Let Ci be the vector space of C∞
i-forms on X. There is the natural differential d : Ci → Ci+1. Then
we have a complex (Ci, d), called the de Rham complex. Similarly, we
have de Rham cohomology H i := ker(di)/im(di−1). ¤
Example 4.2.5 (Koszul complex, free resolution).

Given a ring R = k[x, y, z, w]/(xz − y2, xw − yz, yw − z2). How can
we realize it via describing generators and relations?

Let S = k[x, y, x], then there is an exact sequence

0 → ⊕S2 → ⊕3S
(xz−y2,xw−yz,yw−z2)−→ S → R → 0.
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So the ring R can be realized as the complex of free modules. This is
an example of so-called free-resolution. ¤

What we would like to do is more or less the algebraic structure
needed for this kind of situation.


