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3.13. separability and inseparability. We first recall something about
separable extension.

To start with, let f(z) be an irreducible polynomial in K[x] and
f'(z) be its derivative (formally). More precisely, if f(z) = > a2’
then f'(z) := Y, ia;z"'. One has the following equivalence:

(1) f(x) is separable, i.e. no multiple roots in K.

(2) (f(x), f'(x)) =1 € Klz].

(3) (f(z), f'(z)) =1 € Klz].

(4) f'(z) = 0.
Therefore, the only possibility to have non-separable polynomial is
char(K) =p and f(z) = g(aP).

Given an element u algebraic over K, one can define the separable

degree to be the number of distinct roots of minimal polynomial. This
notion can be extended to a general setting:

Definition 3.13.1. Let IF'/K be an extension. Fiz an embedding o :
K — L = L. We define the separable degree of F/K, denoted [F : K],
to be the cardinality of

Sy :={1:F — Ltk = 0}.

In particular, if F' = K(u) for some u with minimal polynomial p(z),
then [F : K] is the number of distinct roots of p(x) in K.

One can check that [F': K] is independent of o and L. Hence the
definition is well-defined. Moreover, if F' = K (u) for u algebraic over
K, then [F : K|, = [K(u) : K] is the number of distinct roots of
the minimal polynomial p(x) of u. This can be seen by considering

K-embedding 7 : K(u) — K, 7(u) must be a root of p(z) and 7 is
determined by 7(u).

Proposition 3.13.2. If K C E C F, then [F : K|; = [F : E|s[E : K];.
Moreover, if F/K is finite, then [F : K|y < [F : K].

Sketch. The first statement follows from the definition.
It’s clear that [K(u) : K|s < [K(u) : K] by definition. Then by

induction, we have [F': K| < [F': K| if [F': K] is finite. O
Then we have the following useful criterion:

Proposition 3.13.3. If F/K is finite, then F/K is separable if and
only if [F : K], = [F : K].

Sketch. Suppose that F/K is separable. Let L be the maximal inter-
mediate subfield such that [L : K]; = [L : K]. We claim that L = F.
Suppose not, let v € F'— L. Since u is separable over K, it’s separable
over L. Thus [L(u) : L|s = [L(u) : L]. So [L(u) : K|s = [L(u) : K] give
the contradiction.
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Conversely, for any u € F', one sees that
[F: K], =[F: Ku)Ku): Kl <[F: Kul[K(u): K] <[F:K].
Since [F: Kl; = [F: K|, we have [K(u) : K| = [K(u) : K]. Thus u is
separable over K. O

we can then prove the following:

Theorem 3.13.4. Suppose that F = K(S) such that each elements of
S is separable over K, then F/K is separable.

Sketch. By the previous Proposition, one can see that if uy, uy are sep-
arable over K, then K (uq,us) is separable over K.

In general, if u € K(S5), then u € K(uy, ..., u,) for some uy,...,u, €
S, hence separable over K. Then so is u. O

In particular, let
S := {u € F|u is separable over K}.

Then S is an intermediate subfield over K. The reason can be seen as
following: w,v € S, u+ v,uv € K(u,v). Since u,v are separable over
K. Then K(u,v) is an separable extension. Thus elements in K (u,v)
are separable over K.

Exercise 3.13.5.

Separable extension has the following properties:
1. Let K € E C F. Then F/K is separable if and only if F'/E and
E/K are separable.
2 If E/K is separable then FE/F is separable for an extension F/K.
3 1f E, F C L are separable extension over K. Then EF' is separable
over K. U

Exercise 3.13.6.

Let F//K be a finite extension, then [F': K], =[S : K]. O
Before we move onto the study of inseparability, we would like to
prove the famous theorem of primitive element.

Theorem 3.13.7. If F'/K is separable and finite, then F = K(«) for
some a € F'.

In order to prove the theorem we need to study simple extensions.
When the base field is finite, then things are easy.

Proposition 3.13.8. If K is a finite field and F/K is an algebraic
field extension. The following are equivalent:
(1) F/K is finite.
(2) F = K(«) for some o € f. That is, F/K is a simple extension.
(3) There is only finitely many intermediate fields.
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Proof. For (1) = (2), if F/K is finite, then F' is finite. F* is a cyclic
multiplicative group, say F* =< a >. Then it’s clear that F' = K(«).

(2) = (1) is trivial.

(1) = (3). Suppose that |K| = q, |F'| = ¢". Let E be an intermediate
field, then it’s clear that |E| = ¢¢ for some d|n. One can prove that
for any d|n, there is exactly one intermediate field with ¢? elements.
Hence there are only finitely many intermediate fields.

(3) = (1). Suppose on the other hand that F//K is not finite. First
consider the case that F//K is not algebraic, i.e. there is u € F not
algebraic over K. Then we have infinitele many intermediate subfields
K(u) D K(u?) C K(u*).... Which is a contradiction.

Secondly, if F'/K is algebraic. Then it is not finitely generated,
otherwise it’s finite. We can easily get (by axiom of choice) a infinite
sequence of intermediate fields

K C K(CL1> C K(Cll,(lz)...
by adding generators. Il

Proposition 3.13.9. Let F'/K be a finite extension, then F = K(«)
if and only if there is only finitely many intermediate fields.

Proof. If K is finite, then we are done by the previous Proposition. We
assume that K is infinite.

Suppose that there is only finitely many intermediate fields. For any
o, € F, we can consider intermediate fields K (« + ¢3) as ¢ ranging
in K. Since K is infinite. There must exists c¢;,co € K such that
K(a+ ¢ 8) = K(a+ cf3). Tt’s easy to check that

K(a,8) = K(a+ cf).

By induction on number of generators of F'/ K, we proved that F'/K is
a simple extension.

Suppose now that F' = K(«). We would like to prove the finiteness
by using the following map:

¢:{E|K CECF}—Y:={pg)},

where pg(x) denotes the minimal polynomial of o over E. Since every
pe(z) is a divisor of px(x) in the algebraic closure (or in the splitting
field), it’s clear that ¥ is finite.

It’s enough to prove that ¢ is injective. To this end, let Ey be the
extension over K generated by coefficient of pg(x). One sees that
pe(z) € Ey[z] is irreducible and hence a minimal polynomial of a over
FEy. Hence we have

[K(«) : E] = deg(pe(z)) = [K(a) : Ep.

It follows that E = E,. Thus, if ¢(F) = ¢(E’'), then £ = Ey = E'.
This proved the injectivity. U
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Proof of Theorem 3.13.7. We may assume that K is infinite. By in-
duction on generators of F'/K, we may assume that F' = K(a, ). Let
n:=[F: K], and 071, ..., 0, be the distinct embedding of F' in K. Let

P(z) := H(ai(a + fz) — oj(a — fz).
i
Since deg(P(x)) = n(n — 1) and there are infinitely many elements in

K, there must be an ¢ € K such that P(c) # 0. Thus all o;,(a+¢f) are
all distinct. This gives n distinct embedding of K(a 4 ¢f). One has

[F:Kls=n<[K(a+cf): K|y <[K(a+cp): K] <[F: K]

Since F/K is separable, so is [F' : K], = [F : K|. Thus [K(a+ ¢f) :
K| < [F : K|, and therefore, K (o, 3) = F = K(a + ¢f). O

We now turn our interest to non-separable extension. Instead of
non-separable extension in general, we first study the special case the
all roots of minimal polynomial are the same.

Definition 3.13.10. Let F/K be an extension. An element u € F is
purely inseparable over K if its minimal polynomial p(z) € K|x] factors
in Flz] as (x —uw)™. An extension F/K is purely inseparable over K
if every element of F' is purely inseparable over K.

It’s easy to see that an element v € F' which is both separable and
purely inseparable over K if and only if u € K.
Another useful observation is:

Lemma 3.13.11. Let F/K be an extension with char(K) = 0 # 0.
If u € F is algebraic over K, then uP" is separable over K for some
n > 0.

Proof. The point is that if u is not separable, then its minimal polyno-
mial p(z) is of the form f(z?). Then f(z) is the minimal polynomial
of uP. By induction on degree of u, we are done. O

Being purely inseparable has the following equivalent formulation:

Theorem 3.13.12. Let F/K be an algebraic extension with char(K) =
p # 0. The following are equivalent:

(1) F/K 1is purely inseparable, i.e. every element uw € F has mini-
mal polynomial of the form (x — u)™.

(2) for all u € F, the minimal polynomial is of the form z*" — a €
Klz].

(3) for allu e F, v"" € K for somen > 0.

(4) S = K, that is, the only element of F which is separable over
K are the elements in K.

(5) F/K is generated by purely inseparable elements.
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Proof. Let m = p™r.
(z—u)™ = (z—u)P" = (" —u") =2™ —ru?" 2P Y 4 e K[z].

Therefore, u?" € K, this proved (1) = (3).

Moreover, p'(x) = 2" —u?") € K[z] and p/(z)" is the minimal
polynomial of u (hence irreducible). Therefore, » = 1. This proved
(1) = (2).

(2) = (3) is trivial.

For (3) = (1), let @ = w*" € K, then f(x) := 2" — a € K|[z] and
factors in F[z] as (x — u)P". Hence the minimal polynomial of u over
K is a factor of f(z) and factors into (x — u)™ in F[x].

We have seen (1) = (4) and (5), (4) = (3) follows from the above
Lemma 3.13.11.

It remains to show that (5) = (3). To see this, first note that
F = K(X) where ¥ consists of elements u; such that v € K for some

n (By the proof of (1) = (3)). For any u € F, say u = H Pick

N such that qu e K,Yi=1,..,r. Then v?" € K. O
As a corollary, one can show that
P :={u € Flu is purely inseparable over K}
is an intermediate subfield.

Theorem 3.13.13. Let F//K be an algebraic extension. Keep the no-
tation as above for S, P.

(1) S/K is separable.

(2) P/K is purely inseparable.

(3) F/S is purely inseparable.

(4) F/P is separable if and only F' = PS.

(5) PNS =K.

(6) if F/K is normal, then S/K and F/P are Galois. And Galp/x =
Galp/p = Galg/K.

Proof. We have seen (1), (2),(5). (3) follows from Lemm 3.13.11. For
(4), look at P C SP C F. If F//P is separable, then F//SP is separable.
Look at S C SP C F now. We have F'/K is purely inseparable, thus
sois F//SP. Thus F = SP.

On the other hand, if F' = SP = P(S), then clearly F' = P(S) is
separable over P.

Lastly, we look at G := Galp/kx. We claim that G' = P, hence F/P
is Galois with Galois group Galp/p = Galp/k.

To see the claim, if uw € P, then it’s clear that o(u) = u for all o € G.
Therefore, P C G’. On the other hand, if u € G' and v is another root
of p(x), the minimal polynomial of w. There is an ¢ such that o(u) = v.
Since F'/K is normal, this o can be extended to G. But u € G, thus
v = u, in other words, p(z) = (z —u)™.
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F' is Galois over P because P = G’. Hence F'/P is separable. By
(5), F' = PS.

Lastly, we consider Galp/p = Galp /g — Galg/x by restriction. This
is well-defined since S is stable. More precisely, for u € S, o(u) € S
for all 0 € G because o(u) has the same minimal polynomial as u
does. This is surjective by extension theorem. It remains to show the
injectivity. If o|g = 7|g, then for all u € F' we have u?" € S. Thus,

o(u)?" =) =1(u") = 7(u)"".

It follows that o(u) = 7(u).
It remains to show that S/K is Galois. To see this, suppose u € S is
fixed by all 0 € G, then u € G’ = P. Hence u € K. We are done. [

Definition 3.13.14. Let F/K be a finite extension. We define the
inseparable degree of F/K, denoted [F : KJ;, to be [F : K|/[F : K]s.

Note that [F': K]; = [F : S] = p™ for some n.
If char(K) = p # 0, we write K? = {uP|u € K}.

Definition 3.13.15. K s said to be perfect if KP = K
Example 3.13.16. Finite fields are perfect. F,(x) is not perfect.

Corollary 3.13.17. Let F//K be an algebraic extension with char(K) =
p # 0. We have
(1) If F/K is separable, then F = KF?" for each n > 1.
(2) If F/K s finite and F = KF?, then F/K is separable.
(3) In particular, u € F is separable over K if and only if K(uP) =
K(u).

Note that FP is not necessarily an extension over K. So is F?". But
we can take K FP", which is an extension over K.

Proof. We first suppose that F'/K is finite, hence finitely generated.
Write F' = K(uy,...,u,). It’s clear that there is N > 1 such that
u?" € S. Hence FP" C S, therefore, KFrY c S.

We claim that S = KF?". To see this, one notices that F is purely
inseparable over KF?" | so is S purely inseparable over K F' »" . And
on the other hand, S is separable over K, so is over KF »" . Hence
S =KF".

For (1), if F/K is separable and finite, then we have F = KF?"
However, in the proof, one can choose N to be arbitrary large. More
precisely, one has F' = KFP" for all N > Nj. By looking at the
inclusion

F=KF" cKF" ' c..cKFCF
One has F = KFP" for all n > 1.

Suppose now that F//K is separable but not necessarily finite. For
any u € F', we consider Fy := K(u) which is separable and finite over
K. Thus u € Fy = KF!" ¢ KF?" for all n > 1. This proves (1).
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We now prove (2). If F = KF?, then F = K(KFP)Y = KF”.
Inductively, one has F = K FP" for all n > 1. Since we have show that
S = KFr" it follows that F = S.

Apply the statement to a single element. We consider F' = K (u).
FP C KP(uP) C K(uP) . Indeed, KF? = K(u?). By (2), if K(u) =
K (uP), then u is separable. By (1), if u is separable, then K(u) =
K (uP).

O

3.14. transcendental extension. We now start our discussion on
transcendental extension. The main purpose is to show that the con-
cept of transcendental degree, which is the cardinality of transcendental
basis, can be well-defined. Moreover, transcendental degree is a good
candidate for defining dimension.

Definition 3.14.1. Let F/K be an extension. S C F is said to be
algebraically dependent (over K ) if there is anmn > 1 and an f # 0 €
Kxq,...,x,] such that f(s1,...,8,) = 0 for some s1, ..., s, € S. Roughly
speaking, some element of S satisfy a non-zero algebraic relation f over
K.

S is said to be algebraically independent over K if it’s not alge-
braically dependent over K.

Example 3.14.2. For any u € F, {u} is algebraically dependent over
K if and only if u is algebraic over K.

Example 3.14.3. In the extension K(xq,...,x,)/K, S = {x1,...,2,}
15 algebraically independent over K.



