Dec. 22, 2006

3.13. **separability and inseparability.** We first recall something about separable extension.

To start with, let f(x) be an irreducible polynomial in K[x] and f'(x) be its derivative (formally). More precisely, if $f(x) = \sum_{i=0}^{n} a_i x^i$, then $f'(x) := \sum_{i=1}^{n} i a_i x^{i-1}$. One has the following equivalence:

- (1) f(x) is separable, i.e. no multiple roots in \overline{K} .
- (2) $(f(x), f'(x)) = 1 \in K[x].$
- (3) $(f(x), f'(x)) = 1 \in K[x].$
- (4) f'(x) = 0.

Therefore, the only possibility to have non-separable polynomial is char(K) = p and $f(x) = g(x^p)$.

Given an element u algebraic over K, one can define the separable degree to be the number of distinct roots of minimal polynomial. This notion can be extended to a general setting:

Definition 3.13.1. Let F/K be an extension. Fix an embedding σ : $K \to L = \overline{L}$. We define the separable degree of F/K, denoted $[F:K]_s$, to be the cardinality of

$$S_{\sigma} := \{ \tau : F \to L | \tau_{|K} = \sigma \}.$$

In particular, if F = K(u) for some u with minimal polynomial p(x), then $[F:K]_s$ is the number of distinct roots of p(x) in \overline{K} .

One can check that $[F:K]_s$ is independent of σ and L. Hence the definition is well-defined. Moreover, if F = K(u) for u algebraic over K, then $[F:K]_s = [K(u):K]_s$ is the number of distinct roots of the minimal polynomial p(x) of u. This can be seen by considering K-embedding $\tau : K(u) \to \overline{K}, \tau(u)$ must be a root of p(x) and τ is determined by $\tau(u)$.

Proposition 3.13.2. If $K \subset E \subset F$, then $[F:K]_s = [F:E]_s[E:K]_s$. Moreover, if F/K is finite, then $[F:K]_s \leq [F:K]$.

Sketch. The first statement follows from the definition.

It's clear that $[K(u) : K]_s \leq [K(u) : K]$ by definition. Then by induction, we have $[F : K]_s \leq [F : K]$ if [F : K] is finite. \Box

Then we have the following useful criterion:

Proposition 3.13.3. If F/K is finite, then F/K is separable if and only if $[F:K]_s = [F:K]$.

Sketch. Suppose that F/K is separable. Let L be the maximal intermediate subfield such that $[L:K]_s = [L:K]$. We claim that L = F. Suppose not, let $u \in F - L$. Since u is separable over K, it's separable over L. Thus $[L(u):L]_s = [L(u):L]$. So $[L(u):K]_s = [L(u):K]$ give the contradiction.

Conversely, for any $u \in F$, one sees that

$$[F:K]_s = [F:K(u)]_s[K(u):K]_s \le [F:K(u)][K(u):K] \le [F:K].$$

Since $[F:K]_s = [F:K]$, we have $[K(u):K]_s = [K(u):K]$. Thus u is separable over K .

we can then prove the following:

Theorem 3.13.4. Suppose that F = K(S) such that each elements of S is separable over K, then F/K is separable.

Sketch. By the previous Proposition, one can see that if u_1, u_2 are separable over K, then $K(u_1, u_2)$ is separable over K.

In general, if $u \in K(S)$, then $u \in K(u_1, ..., u_n)$ for some $u_1, ..., u_n \in S$, hence separable over K. Then so is u.

In particular, let

 $S := \{ u \in F | u \text{ is separable over } K \}.$

Then S is an intermediate subfield over K. The reason can be seen as following: $u, v \in S$, u + v, $uv \in K(u, v)$. Since u, v are separable over K. Then K(u, v) is an separable extension. Thus elements in K(u, v) are separable over K.

Exercise 3.13.5.

Separable extension has the following properties:

1. Let $K \subset E \subset F$. Then F/K is separable if and only if F/E and E/K are separable.

2 If E/K is separable then FE/F is separable for an extension F/K. 3 If $E, F \subset L$ are separable extension over K. Then EF is separable over K.

Exercise 3.13.6.

Let F/K be a finite extension, then $[F:K]_s = [S:K]$.

Before we move onto the study of inseparability, we would like to prove the famous theorem of primitive element.

Theorem 3.13.7. If F/K is separable and finite, then $F = K(\alpha)$ for some $\alpha \in F$.

In order to prove the theorem we need to study simple extensions. When the base field is finite, then things are easy.

Proposition 3.13.8. If K is a finite field and F/K is an algebraic field extension. The following are equivalent:

- (1) F/K is finite.
- (2) $F = K(\alpha)$ for some $\alpha \in f$. That is, F/K is a simple extension.
- (3) There is only finitely many intermediate fields.

Proof. For (1) \Rightarrow (2), if F/K is finite, then F is finite. F^* is a cyclic multiplicative group, say $F^* = \langle \alpha \rangle$. Then it's clear that $F = K(\alpha)$. (2) \Rightarrow (1) is trivial.

 $(1) \Rightarrow (3)$. Suppose that |K| = q, $|F| = q^n$. Let E be an intermediate field, then it's clear that $|E| = q^d$ for some d|n. One can prove that for any d|n, there is exactly one intermediate field with q^d elements. Hence there are only finitely many intermediate fields.

 $(3) \Rightarrow (1)$. Suppose on the other hand that F/K is not finite. First consider the case that F/K is not algebraic, i.e. there is $u \in F$ not algebraic over K. Then we have infinitele many intermediate subfields $K(u) \supset K(u^2) \subset K(u^4)$ Which is a contradiction.

Secondly, if F/K is algebraic. Then it is not finitely generated, otherwise it's finite. We can easily get (by axiom of choice) a infinite sequence of intermediate fields

$$K \subset K(a_1) \subset K(a_1, a_2)...$$

by adding generators.

Proposition 3.13.9. Let F/K be a finite extension, then $F = K(\alpha)$ if and only if there is only finitely many intermediate fields.

Proof. If K is finite, then we are done by the previous Proposition. We assume that K is infinite.

Suppose that there is only finitely many intermediate fields. For any $\alpha, \beta \in F$, we can consider intermediate fields $K(\alpha + c\beta)$ as c ranging in K. Since K is infinite. There must exists $c_1, c_2 \in K$ such that $K(\alpha + c_1\beta) = K(\alpha + c_2\beta)$. It's easy to check that

$$K(\alpha,\beta) = K(\alpha + c\beta).$$

By induction on number of generators of F/K, we proved that F/K is a simple extension.

Suppose now that $F = K(\alpha)$. We would like to prove the finiteness by using the following map:

$$\phi: \{E | K \subset E \subset F\} \to \Sigma := \{p_E(x)\},\$$

where $p_E(x)$ denotes the minimal polynomial of α over E. Since every $p_E(x)$ is a divisor of $p_K(x)$ in the algebraic closure (or in the splitting field), it's clear that Σ is finite.

It's enough to prove that ϕ is injective. To this end, let E_0 be the extension over K generated by coefficient of $p_E(x)$. One sees that $p_E(x) \in E_0[x]$ is irreducible and hence a minimal polynomial of α over E_0 . Hence we have

$$[K(\alpha):E] = deg(p_E(x)) = [K(\alpha):E_0].$$

It follows that $E = E_0$. Thus, if $\phi(E) = \phi(E')$, then $E = E_0 = E'$. This proved the injectivity.

Proof of Theorem 3.13.7. We may assume that K is infinite. By induction on generators of F/K, we may assume that $F = K(\alpha, \beta)$. Let $n := [F:K]_s$, and $\sigma_1, ..., \sigma_n$ be the distinct embedding of F in \overline{K} . Let

$$P(x) := \prod_{i \neq j} (\sigma_i(\alpha + \beta x) - \sigma_j(\alpha - \beta x))$$

Since deg(P(x)) = n(n-1) and there are infinitely many elements in K, there must be an $c \in K$ such that $P(c) \neq 0$. Thus all $\sigma_i(\alpha + c\beta)$ are all distinct. This gives n distinct embedding of $K(\alpha + c\beta)$. One has

$$[F:K]_s = n \le [K(\alpha + c\beta):K]_s \le [K(\alpha + c\beta):K] \le [F:K].$$

Since F/K is separable, so is $[F:K]_s = [F:K]$. Thus $[K(\alpha + c\beta) : K] \leq [F:K]$, and therefore, $K(\alpha, \beta) = F = K(\alpha + c\beta)$.

We now turn our interest to non-separable extension. Instead of non-separable extension in general, we first study the special case the all roots of minimal polynomial are the same.

Definition 3.13.10. Let F/K be an extension. An element $u \in F$ is purely inseparable over K if its minimal polynomial $p(x) \in K[x]$ factors in F[x] as $(x - u)^m$. An extension F/K is purely inseparable over K if every element of F is purely inseparable over K.

It's easy to see that an element $u \in F$ which is both separable and purely inseparable over K if and only if $u \in K$.

Another useful observation is:

Lemma 3.13.11. Let F/K be an extension with $char(K) = 0 \neq 0$. If $u \in F$ is algebraic over K, then u^{p^n} is separable over K for some $n \geq 0$.

Proof. The point is that if u is not separable, then its minimal polynomial p(x) is of the form $f(x^p)$. Then f(x) is the minimal polynomial of u^p . By induction on degree of u, we are done.

Being purely inseparable has the following equivalent formulation:

Theorem 3.13.12. Let F/K be an algebraic extension with $char(K) = p \neq 0$. The following are equivalent:

- (1) F/K is purely inseparable, i.e. every element $u \in F$ has minimal polynomial of the form $(x - u)^m$.
- (2) for all $u \in F$, the minimal polynomial is of the form $x^{p^n} a \in K[x]$.
- (3) for all $u \in F$, $u^{p^n} \in K$ for some $n \ge 0$.
- (4) S = K, that is, the only element of F which is separable over K are the elements in K.
- (5) F/K is generated by purely inseparable elements.

Proof. Let $m = p^n r$.

 $(x-u)^m = (x-u)^{p^n r} = (x^{p^n} - u^{p^n})^r = x^m - r u^{p^n} x^{p^n(r-1)} + \dots \in K[x].$ Therefore, $u^{p^n} \in K$, this proved (1) \Rightarrow (3).

Moreover, $p'(x) := x^{p^n} - u^{p^n} \in K[x]$ and $p'(x)^r$ is the minimal polynomial of u (hence irreducible). Therefore, r = 1. This proved $(1) \Rightarrow (2)$.

 $(2) \Rightarrow (3)$ is trivial.

For (3) \Rightarrow (1), let $a = u^{p^n} \in K$, then $f(x) := x^{p^n} - a \in K[x]$ and factors in F[x] as $(x - u)^{p^n}$. Hence the minimal polynomial of u over K is a factor of f(x) and factors into $(x - u)^m$ in F[x].

We have seen $(1) \Rightarrow (4)$ and (5), $(4) \Rightarrow (3)$ follows from the above Lemma 3.13.11.

It remains to show that $(5) \Rightarrow (3)$. To see this, first note that $F = K(\Sigma)$ where Σ consists of elements u_i such that $u_i^{p^n} \in K$ for some n (By the proof of $(1) \Rightarrow (3)$). For any $u \in F$, say $u = \frac{f(u_1, \dots, u_r)}{g(u_1, \dots, u_r)}$. Pick N such that $u_i^{p^N} \in K, \forall i = 1, \dots, r$. Then $u^{p^N} \in K$.

As a corollary, one can show that

 $P := \{ u \in F | u \text{ is purely inseparable over } K \}$

is an intermediate subfield.

Theorem 3.13.13. Let F/K be an algebraic extension. Keep the notation as above for S, P.

- (1) S/K is separable.
- (2) P/K is purely inseparable.
- (3) F/S is purely inseparable.
- (4) F/P is separable if and only F = PS.
- (5) $P \cap S = K$.
- (6) if F/K is normal, then S/K and F/P are Galois. And $\operatorname{Gal}_{F/K} = \operatorname{Gal}_{F/P} \cong \operatorname{Gal}_{S/K}$.

Proof. We have seen (1), (2), (5). (3) follows from Lemm 3.13.11. For (4), look at $P \subset SP \subset F$. If F/P is separable, then F/SP is separable. Look at $S \subset SP \subset F$ now. We have F/K is purely inseparable, thus so is F/SP. Thus F = SP.

On the other hand, if F = SP = P(S), then clearly F = P(S) is separable over P.

Lastly, we look at $G := \operatorname{Gal}_{F/K}$. We claim that G' = P, hence F/P is Galois with Galois group $\operatorname{Gal}_{F/P} = \operatorname{Gal}_{F/K}$.

To see the claim, if $u \in P$, then it's clear that $\sigma(u) = u$ for all $\sigma \in G$. Therefore, $P \subset G'$. On the other hand, if $u \in G'$ and v is another root of p(x), the minimal polynomial of u. There is an σ such that $\sigma(u) = v$. Since F/K is normal, this σ can be extended to G. But $u \in G'$, thus v = u, in other words, $p(x) = (x - u)^m$.

64

F is Galois over P because P = G'. Hence F/P is separable. By (5), F = PS.

Lastly, we consider $\operatorname{Gal}_{F/P} = \operatorname{Gal}_{F/K} \to \operatorname{Gal}_{S/K}$ by restriction. This is well-defined since S is stable. More precisely, for $u \in S$, $\sigma(u) \in S$ for all $\sigma \in G$ because $\sigma(u)$ has the same minimal polynomial as udoes. This is surjective by extension theorem. It remains to show the injectivity. If $\sigma|_S = \tau|_S$, then for all $u \in F$ we have $u^{p^n} \in S$. Thus,

$$\sigma(u)^{p^n} = \sigma(u^{p^n}) = \tau(u^{p^n}) = \tau(u)^{p^n}.$$

It follows that $\sigma(u) = \tau(u)$.

It remains to show that S/K is Galois. To see this, suppose $u \in S$ is fixed by all $\sigma \in G$, then $u \in G' = P$. Hence $u \in K$. We are done. \Box

Definition 3.13.14. Let F/K be a finite extension. We define the inseparable degree of F/K, denoted $[F:K]_i$, to be $[F:K]/[F:K]_s$.

Note that $[F:K]_i = [F:S] = p^n$ for some n.

If char(K) = $p \neq 0$, we write $K^p = \{u^p | u \in K\}$.

Definition 3.13.15. *K* is said to be perfect if $K^p = K$

Example 3.13.16. Finite fields are perfect. $\mathbb{F}_p(x)$ is not perfect.

Corollary 3.13.17. Let F/K be an algebraic extension with char $(K) = p \neq 0$. We have

- (1) If F/K is separable, then $F = KF^{p^n}$ for each $n \ge 1$.
- (2) If F/K is finite and $F = KF^p$, then F/K is separable.
- (3) In particular, $u \in F$ is separable over K if and only if $K(u^p) = K(u)$.

Note that F^p is not necessarily an extension over K. So is F^{p^n} . But we can take KF^{p^n} , which is an extension over K.

Proof. We first suppose that F/K is finite, hence finitely generated. Write $F = K(u_1, ..., u_r)$. It's clear that there is $N \ge 1$ such that $u^{p^N} \in S$. Hence $F^{p^N} \subset S$, therefore, $KF^{p^N} \subset S$.

We claim that $S = KF^{p^N}$. To see this, one notices that F is purely inseparable over KF^{p^N} , so is S purely inseparable over KF^{p^N} . And on the other hand, S is separable over K, so is over KF^{p^N} . Hence $S = KF^{p^N}$.

For (1), if F/K is separable and finite, then we have $F = KF^{p^N}$. However, in the proof, one can choose N to be arbitrary large. More precisely, one has $F = KF^{p^N}$ for all $N \ge N_0$. By looking at the inclusion

 $F = KF^{p^N} \subset KF^{p^{N-1}} \subset \ldots \subset KF^p \subset F.$

One has $F = KF^{p^n}$ for all $n \ge 1$.

Suppose now that F/K is separable but not necessarily finite. For any $u \in F$, we consider $F_0 := K(u)$ which is separable and finite over K. Thus $u \in F_0 = KF_0^{p^n} \subset KF^{p^n}$ for all $n \ge 1$. This proves (1). We now prove (2). If $F = KF^p$, then $F = K(KF^p)^p = KF^{p^2}$. Inductively, one has $F = KF^{p^n}$ for all $n \ge 1$. Since we have show that $S = KF^{p^N}$, it follows that F = S.

Apply the statement to a single element. We consider F = K(u). $F^p \subset K^p(u^p) \subset K(u^p)$. Indeed, $KF^p = K(u^p)$. By (2), if $K(u) = K(u^p)$, then u is separable. By (1), if u is separable, then $K(u) = K(u^p)$.

3.14. transcendental extension. We now start our discussion on transcendental extension. The main purpose is to show that the concept of *transcendental degree*, which is the cardinality of transcendental basis, can be well-defined. Moreover, transcendental degree is a good candidate for defining dimension.

Definition 3.14.1. Let F/K be an extension. $S \subset F$ is said to be algebraically dependent (over K) if there is an $n \ge 1$ and an $f \ne 0 \in$ $K[x_1, ..., x_n]$ such that $f(s_1, ..., s_n) = 0$ for some $s_1, ..., s_n \in S$. Roughly speaking, some element of S satisfy a non-zero algebraic relation f over K.

S is said to be algebraically independent over K if it's not algebraically dependent over K.

Example 3.14.2. For any $u \in F$, $\{u\}$ is algebraically dependent over K if and only if u is algebraic over K.

Example 3.14.3. In the extension $K(x_1, ..., x_n)/K$, $S = \{x_1, ..., x_n\}$ is algebraically independent over K.