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Dec. 22, 2006

3.13. separability and inseparability. We first recall something about
separable extension.

To start with, let f(x) be an irreducible polynomial in K[x] and
f ′(x) be its derivative (formally). More precisely, if f(x) =

∑n
i=0 aix

i,
then f ′(x) :=

∑n
i=1 iaix

i−1. One has the following equivalence:

(1) f(x) is separable, i.e. no multiple roots in K.
(2) (f(x), f ′(x)) = 1 ∈ K[x].
(3) (f(x), f ′(x)) = 1 ∈ K[x].
(4) f ′(x) = 0.

Therefore, the only possibility to have non-separable polynomial is
char(K) = p and f(x) = g(xp).

Given an element u algebraic over K, one can define the separable
degree to be the number of distinct roots of minimal polynomial. This
notion can be extended to a general setting:

Definition 3.13.1. Let F/K be an extension. Fix an embedding σ :
K → L = L. We define the separable degree of F/K, denoted [F : K]s,
to be the cardinality of

Sσ := {τ : F → L|τ|K = σ}.
In particular, if F = K(u) for some u with minimal polynomial p(x),

then [F : K]s is the number of distinct roots of p(x) in K.

One can check that [F : K]s is independent of σ and L. Hence the
definition is well-defined. Moreover, if F = K(u) for u algebraic over
K, then [F : K]s = [K(u) : K]s is the number of distinct roots of
the minimal polynomial p(x) of u. This can be seen by considering
K-embedding τ : K(u) → K, τ(u) must be a root of p(x) and τ is
determined by τ(u).

Proposition 3.13.2. If K ⊂ E ⊂ F , then [F : K]s = [F : E]s[E : K]s.
Moreover, if F/K is finite, then [F : K]s ≤ [F : K].

Sketch. The first statement follows from the definition.
It’s clear that [K(u) : K]s ≤ [K(u) : K] by definition. Then by

induction, we have [F : K]s ≤ [F : K] if [F : K] is finite. ¤
Then we have the following useful criterion:

Proposition 3.13.3. If F/K is finite, then F/K is separable if and
only if [F : K]s = [F : K].

Sketch. Suppose that F/K is separable. Let L be the maximal inter-
mediate subfield such that [L : K]s = [L : K]. We claim that L = F .
Suppose not, let u ∈ F −L. Since u is separable over K, it’s separable
over L. Thus [L(u) : L]s = [L(u) : L]. So [L(u) : K]s = [L(u) : K] give
the contradiction.
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Conversely, for any u ∈ F , one sees that

[F : K]s = [F : K(u)]s[K(u) : K]s ≤ [F : K(u)][K(u) : K] ≤ [F : K].

Since [F : K]s = [F : K], we have [K(u) : K]s = [K(u) : K]. Thus u is
separable over K. ¤

we can then prove the following:

Theorem 3.13.4. Suppose that F = K(S) such that each elements of
S is separable over K, then F/K is separable.

Sketch. By the previous Proposition, one can see that if u1, u2 are sep-
arable over K, then K(u1, u2) is separable over K.

In general, if u ∈ K(S), then u ∈ K(u1, ..., un) for some u1, ..., un ∈
S, hence separable over K. Then so is u. ¤

In particular, let

S := {u ∈ F |u is separable over K}.
Then S is an intermediate subfield over K. The reason can be seen as
following: u, v ∈ S, u + v, uv ∈ K(u, v). Since u, v are separable over
K. Then K(u, v) is an separable extension. Thus elements in K(u, v)
are separable over K.

Exercise 3.13.5.

Separable extension has the following properties:
1. Let K ⊂ E ⊂ F . Then F/K is separable if and only if F/E and
E/K are separable.
2 If E/K is separable then FE/F is separable for an extension F/K.
3 If E, F ⊂ L are separable extension over K. Then EF is separable
over K. ¤
Exercise 3.13.6.

Let F/K be a finite extension, then [F : K]s = [S : K]. ¤
Before we move onto the study of inseparability, we would like to

prove the famous theorem of primitive element.

Theorem 3.13.7. If F/K is separable and finite, then F = K(α) for
some α ∈ F .

In order to prove the theorem we need to study simple extensions.
When the base field is finite, then things are easy.

Proposition 3.13.8. If K is a finite field and F/K is an algebraic
field extension. The following are equivalent:

(1) F/K is finite.
(2) F = K(α) for some α ∈ f . That is, F/K is a simple extension.
(3) There is only finitely many intermediate fields.



62

Proof. For (1) ⇒ (2), if F/K is finite, then F is finite. F ∗ is a cyclic
multiplicative group, say F ∗ =< α >. Then it’s clear that F = K(α).

(2) ⇒ (1) is trivial.
(1) ⇒ (3). Suppose that |K| = q, |F | = qn. Let E be an intermediate

field, then it’s clear that |E| = qd for some d|n. One can prove that
for any d|n, there is exactly one intermediate field with qd elements.
Hence there are only finitely many intermediate fields.

(3) ⇒ (1). Suppose on the other hand that F/K is not finite. First
consider the case that F/K is not algebraic, i.e. there is u ∈ F not
algebraic over K. Then we have infinitele many intermediate subfields
K(u) ⊃ K(u2) ⊂ K(u4).... Which is a contradiction.

Secondly, if F/K is algebraic. Then it is not finitely generated,
otherwise it’s finite. We can easily get (by axiom of choice) a infinite
sequence of intermediate fields

K ⊂ K(a1) ⊂ K(a1, a2)...

by adding generators. ¤

Proposition 3.13.9. Let F/K be a finite extension, then F = K(α)
if and only if there is only finitely many intermediate fields.

Proof. If K is finite, then we are done by the previous Proposition. We
assume that K is infinite.

Suppose that there is only finitely many intermediate fields. For any
α, β ∈ F , we can consider intermediate fields K(α + cβ) as c ranging
in K. Since K is infinite. There must exists c1, c2 ∈ K such that
K(α + c1β) = K(α + c2β). It’s easy to check that

K(α, β) = K(α + cβ).

By induction on number of generators of F/K, we proved that F/K is
a simple extension.

Suppose now that F = K(α). We would like to prove the finiteness
by using the following map:

φ : {E|K ⊂ E ⊂ F} → Σ := {pE(x)},
where pE(x) denotes the minimal polynomial of α over E. Since every
pE(x) is a divisor of pK(x) in the algebraic closure (or in the splitting
field), it’s clear that Σ is finite.

It’s enough to prove that φ is injective. To this end, let E0 be the
extension over K generated by coefficient of pE(x). One sees that
pE(x) ∈ E0[x] is irreducible and hence a minimal polynomial of α over
E0. Hence we have

[K(α) : E] = deg(pE(x)) = [K(α) : E0].

It follows that E = E0. Thus, if φ(E) = φ(E ′), then E = E0 = E ′.
This proved the injectivity. ¤
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Proof of Theorem 3.13.7. We may assume that K is infinite. By in-
duction on generators of F/K, we may assume that F = K(α, β). Let
n := [F : K]s, and σ1, ..., σn be the distinct embedding of F in K. Let

P (x) :=
∏

i6=j

(σi(α + βx)− σj(α− βx).

Since deg(P (x)) = n(n − 1) and there are infinitely many elements in
K, there must be an c ∈ K such that P (c) 6= 0. Thus all σi(α+cβ) are
all distinct. This gives n distinct embedding of K(α + cβ). One has

[F : K]s = n ≤ [K(α + cβ) : K]s ≤ [K(α + cβ) : K] ≤ [F : K].

Since F/K is separable, so is [F : K]s = [F : K]. Thus [K(α + cβ) :
K] ≤ [F : K], and therefore, K(α, β) = F = K(α + cβ). ¤

We now turn our interest to non-separable extension. Instead of
non-separable extension in general, we first study the special case the
all roots of minimal polynomial are the same.

Definition 3.13.10. Let F/K be an extension. An element u ∈ F is
purely inseparable over K if its minimal polynomial p(x) ∈ K[x] factors
in F [x] as (x − u)m. An extension F/K is purely inseparable over K
if every element of F is purely inseparable over K.

It’s easy to see that an element u ∈ F which is both separable and
purely inseparable over K if and only if u ∈ K.

Another useful observation is:

Lemma 3.13.11. Let F/K be an extension with char(K) = 0 6= 0.
If u ∈ F is algebraic over K, then upn

is separable over K for some
n ≥ 0.

Proof. The point is that if u is not separable, then its minimal polyno-
mial p(x) is of the form f(xp). Then f(x) is the minimal polynomial
of up. By induction on degree of u, we are done. ¤

Being purely inseparable has the following equivalent formulation:

Theorem 3.13.12. Let F/K be an algebraic extension with char(K) =
p 6= 0. The following are equivalent:

(1) F/K is purely inseparable, i.e. every element u ∈ F has mini-
mal polynomial of the form (x− u)m.

(2) for all u ∈ F , the minimal polynomial is of the form xpn − a ∈
K[x].

(3) for all u ∈ F , upn ∈ K for some n ≥ 0.
(4) S = K, that is, the only element of F which is separable over

K are the elements in K.
(5) F/K is generated by purely inseparable elements.
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Proof. Let m = pnr.

(x− u)m = (x− u)pnr = (xpn − upn

)r = xm − rupn

xpn(r−1) + ... ∈ K[x].

Therefore, upn ∈ K, this proved (1) ⇒ (3).
Moreover, p′(x) := xpn − upn

) ∈ K[x] and p′(x)r is the minimal
polynomial of u (hence irreducible). Therefore, r = 1. This proved
(1) ⇒ (2).

(2) ⇒ (3) is trivial.
For (3) ⇒ (1), let a = upn ∈ K, then f(x) := xpn − a ∈ K[x] and

factors in F [x] as (x − u)pn
. Hence the minimal polynomial of u over

K is a factor of f(x) and factors into (x− u)m in F [x].
We have seen (1) ⇒ (4) and (5), (4) ⇒ (3) follows from the above

Lemma 3.13.11.
It remains to show that (5) ⇒ (3). To see this, first note that

F = K(Σ) where Σ consists of elements ui such that upn

i ∈ K for some

n (By the proof of (1) ⇒ (3)). For any u ∈ F , say u = f(u1,...,ur)
g(u1,...,ur)

. Pick

N such that upN

i ∈ K, ∀i = 1, ..., r. Then upN ∈ K. ¤
As a corollary, one can show that

P := {u ∈ F |u is purely inseparable over K}
is an intermediate subfield.

Theorem 3.13.13. Let F/K be an algebraic extension. Keep the no-
tation as above for S, P .

(1) S/K is separable.
(2) P/K is purely inseparable.
(3) F/S is purely inseparable.
(4) F/P is separable if and only F = PS.
(5) P ∩ S = K.
(6) if F/K is normal, then S/K and F/P are Galois. And GalF/K =

GalF/P
∼= GalS/K.

Proof. We have seen (1), (2), (5). (3) follows from Lemm 3.13.11. For
(4), look at P ⊂ SP ⊂ F . If F/P is separable, then F/SP is separable.
Look at S ⊂ SP ⊂ F now. We have F/K is purely inseparable, thus
so is F/SP . Thus F = SP .

On the other hand, if F = SP = P (S), then clearly F = P (S) is
separable over P .

Lastly, we look at G := GalF/K . We claim that G′ = P , hence F/P
is Galois with Galois group GalF/P = GalF/K .

To see the claim, if u ∈ P , then it’s clear that σ(u) = u for all σ ∈ G.
Therefore, P ⊂ G′. On the other hand, if u ∈ G′ and v is another root
of p(x), the minimal polynomial of u. There is an σ such that σ(u) = v.
Since F/K is normal, this σ can be extended to G. But u ∈ G′, thus
v = u, in other words, p(x) = (x− u)m.
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F is Galois over P because P = G′. Hence F/P is separable. By
(5), F = PS.

Lastly, we consider GalF/P = GalF/K → GalS/K by restriction. This
is well-defined since S is stable. More precisely, for u ∈ S, σ(u) ∈ S
for all σ ∈ G because σ(u) has the same minimal polynomial as u
does. This is surjective by extension theorem. It remains to show the
injectivity. If σ|S = τ |S, then for all u ∈ F we have upn ∈ S. Thus,

σ(u)pn

= σ(upn

) = τ(upn

) = τ(u)pn

.

It follows that σ(u) = τ(u).
It remains to show that S/K is Galois. To see this, suppose u ∈ S is

fixed by all σ ∈ G, then u ∈ G′ = P . Hence u ∈ K. We are done. ¤
Definition 3.13.14. Let F/K be a finite extension. We define the
inseparable degree of F/K, denoted [F : K]i, to be [F : K]/[F : K]s.

Note that [F : K]i = [F : S] = pn for some n.
If char(K) = p 6= 0, we write Kp = {up|u ∈ K}.

Definition 3.13.15. K is said to be perfect if Kp = K

Example 3.13.16. Finite fields are perfect. Fp(x) is not perfect.

Corollary 3.13.17. Let F/K be an algebraic extension with char(K) =
p 6= 0. We have

(1) If F/K is separable, then F = KF pn
for each n ≥ 1.

(2) If F/K is finite and F = KF p, then F/K is separable.
(3) In particular, u ∈ F is separable over K if and only if K(up) =

K(u).

Note that F p is not necessarily an extension over K. So is F pn
. But

we can take KF pn
, which is an extension over K.

Proof. We first suppose that F/K is finite, hence finitely generated.
Write F = K(u1, ..., ur). It’s clear that there is N ≥ 1 such that

upN ∈ S. Hence F pN ⊂ S, therefore, KF pN ⊂ S.
We claim that S = KF pN

. To see this, one notices that F is purely
inseparable over KF pN

, so is S purely inseparable over KF pN
. And

on the other hand, S is separable over K, so is over KF pN
. Hence

S = KF pN
.

For (1), if F/K is separable and finite, then we have F = KF pN
.

However, in the proof, one can choose N to be arbitrary large. More
precisely, one has F = KF pN

for all N ≥ N0. By looking at the
inclusion

F = KF pN ⊂ KF pN−1 ⊂ ... ⊂ KF p ⊂ F.

One has F = KF pn
for all n ≥ 1.

Suppose now that F/K is separable but not necessarily finite. For
any u ∈ F , we consider F0 := K(u) which is separable and finite over

K. Thus u ∈ F0 = KF pn

0 ⊂ KF pn
for all n ≥ 1. This proves (1).
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We now prove (2). If F = KF p, then F = K(KF p)p = KF p2
.

Inductively, one has F = KF pn
for all n ≥ 1. Since we have show that

S = KF pN
, it follows that F = S.

Apply the statement to a single element. We consider F = K(u).
F p ⊂ Kp(up) ⊂ K(up) . Indeed, KF p = K(up). By (2), if K(u) =
K(up), then u is separable. By (1), if u is separable, then K(u) =
K(up). ¤
3.14. transcendental extension. We now start our discussion on
transcendental extension. The main purpose is to show that the con-
cept of transcendental degree, which is the cardinality of transcendental
basis, can be well-defined. Moreover, transcendental degree is a good
candidate for defining dimension.

Definition 3.14.1. Let F/K be an extension. S ⊂ F is said to be
algebraically dependent (over K) if there is an n ≥ 1 and an f 6= 0 ∈
K[x1, ..., xn] such that f(s1, ..., sn) = 0 for some s1, ..., sn ∈ S. Roughly
speaking, some element of S satisfy a non-zero algebraic relation f over
K.

S is said to be algebraically independent over K if it’s not alge-
braically dependent over K.

Example 3.14.2. For any u ∈ F , {u} is algebraically dependent over
K if and only if u is algebraic over K.

Example 3.14.3. In the extension K(x1, ..., xn)/K, S = {x1, ..., xn}
is algebraically independent over K.


