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3.10. solving cubic polynomials. In this section, we are going to
review classical result on solving polynomials by using non-classical
language. I think this experience also serve a good start for Galois
theory in general.

Definition 3.10.1. A character from a group G to a field K is
group homomorphism χ : G → K∗. The set of characters is denoted
Homgp(G, K∗).

Let Hom(G,K) be the set of functions from G to K. It’s clear that
Hom(G,K) is a K-vector space.

Theorem 3.10.2 (E. Artin). Homgp(G,K∗) is linearly independent in
Hom(G,K).

Proof. Suppose on the contrary that Homgp(G,K∗) is not linearly in-
dependent. Pick a linearly dependent subset {χ1, ..., χn} of minimal n.
There are ai ∈ K such that

∑
aiχi = 0, i.e.

∑
aiχi(g) = 0, (∗)

for all g ∈ G. We can rewrite it as
∑

aiχi(gh) = 0, (∗∗)
for all g, h ∈ G. Multiply (∗) by χ1(h), we get

∑
aiχi(g)χ1(h) = 0. (∗ ∗ ∗)

Compare (∗) with (∗ ∗ ∗), we get
∑

ai(χi(h)− χ1(h))χi(g) = 0 for all g ∈ G.

Thus
∑n

i=2 ai(χi(h) − χ1(h))χi = 0 ∈ Hom(G,K). It follows that the
n− 1 elements {χ2, ..., χn} is linearly dependent, which is a contradic-
tion to the minimality. ¤

Corollary 3.10.3. Let F/K be an extension. The set of K-homomorphisms
from F to K is linearly independent in the K-vector space of linear
maps from F to K.

Sketch. Take G = F ∗. ¤

Let K be a field containing n-th root of unity ζ. Let F/K be a
Galois extension with Galois group ∼= Zn generated by σ. We consider

ψζ := 1 + ζσ + ζ2σ2 + ... + ζn−1σn−1 ∈ Hom(F, K).

Any element of the form ψ(x) is called a Lagrange resolvent.
By direct computation, we have the following properties.
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Proposition 3.10.4. Keep the notation as above, we have:
1. σ(ψζ(x)) = ζ−1ψζ(x).
2. ψ1(x) ∈ K.
3. (ψζ(x))n ∈ K.
4. (ψζ(x))(ψζ−1(x)) ∈ K.
5.

∑
ζ∈µn

ζ−rψζ(x) = nσr(x).

Now we can use this technique to solve cubic equations. Let f(x) =
x3 + px + q ∈ K[x] be an irreducible polynomial with discriminant
D = −4p3 − 27q2 ∈ K. We assume that K contains a primitive 3-root
of unity ζ. We have extension K ⊂ L := K[

√
D] ⊂ F := K[u1, u2, u3].

Note that F/L is Galois with Galois group ∼= Z3.
Step 1. ψζ 6= 0 ∈ Hom(F, K), in fact ψζ(u1) 6= 0.

Step 2. ψζ(u1) 6= L and (ψζ(u1))
3 ∈ L, thus F = L[ψζ(u1)].

And similarly, ψζ2(u1) ∈ L, (ψζ2(u1))
3 ∈ L. Moreover, ψζ(u1)ψζ2(u1) ∈

L.
Step 3. Solve ψζ(u1),ψζ2(u1) .
Recall that

∆ := (u1−u2)(u2−u3)(u3−u1) = u2
1u2+u3

2u3+u2
3u1−u1u

2
2−u2u

2
3−u3u

2
1.

ψζ(u1)
3 = u3

1+u3
2+u3

3+3ζ(u2
1u2+u2

2u3+u2
3u1)+ζ2(u1u

2
2+u2u

2
3+u3u

2
1)+6u1u2u3.

Let v1 = u2
1u2 + u2

2u3 + u2
3u1, v2 = u1u

2
2 + u2u

2
3 + u3u

2
1, then

v1 + v2 = (u1 + u2 + u3)(u1u2 + u2u3 + u3u1)− 3u1u2u3 = 3q,

v1 − v2 = ∆.

Thus ψζ(u1)
3 can be expressed in terms of p, q, ∆.

Step 4. solve u1, u2, u3 in terms of ψζ(u1),ψζ2(u1).
By the property 5 above, we have

3u1 = ψ1(u1) + ψζ(u1) + ψζ2(u1),

3u2 = 3σ(u1) = ψ1(u1) + ζ−1ψζ(u1) + ζ−2ψζ2(u1),

3u3 = 3σ2(u1) = ψ1(u1) + ζ−2ψζ(u1) + ζ−1ψζ2(u1).

And note that ψ1(u1) = 0. So one can solve cubic polynomial explicitly.

3.11. cyclic extension. The discussion in the previous section can be
extended to a more general setting.

Definition 3.11.1. We say that an extension is cyclic (resp. abelian)
if it’s algebraic Galois and GalF/K is cyclic (resp. abelian). An cyclic
extension of order n is an cyclic extension whose Galois group is iso-
morphic to Zn.

The following theorem characterize cyclic extension except some ex-
ceptional case.
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Theorem 3.11.2. Suppose that char(K) = 0 or char(K) = p - n.
Suppose furthermore that there is a primitive n-th root of unity in K,
say ζ. Then F/K is a cyclic of order n if and only if F = K(u) where
u is a root of irreducible polynomial xn − a ∈ K[x].

Before we get into the proof. Let’s consider the ”difference” be-
tween u and σ(u) for σ ∈ GalF/K . Let F/K be a finite Galois exten-
sion. Then in this circumstance, norm and trace (which we will define
more generally later) are nothing but NF/K(u) :=

∏
σ∈GalF/K

σ(u) and

TF/K :=
∑

σ∈GalF/K
σ(u). It’s easy to see that T (u − σ(u)) = 0 and

N(u/σ(u)) = 1. The follows lemma says that the converse is also true
for cyclic extension, which will play the central role in the study of
cyclic extension.

Lemma 3.11.3. Let F/K be an cyclic extension with σ the generator
of the Galois group.

(1) If TF/K(u) = 0, then there exists an v ∈ F such that u =
v − σ(v).

(2) (Hilbert’s Theorem 90) If NF/K(u) = 1, then there exists an
v ∈ F such that u = v/σ(v).

Proof of the Theorem 3.11.2. Let u be a root of xn − a, then all the
roots are uζ i for i = 0, ..., n − 1. Since ζ ∈ K. We can produce an
element in Galois group by considering σi : u 7→ uζ i. Thus we have
{σi}i=0,...,n−1 ⊂ GalKF . It’s clear that GalKF = {σi}i=0,...,n−1 =<
σ1 >. Thus F = K(u) is a cyclic extension over K.

Conversely, suppose that F/K is a cyclic extension of order n. Since
there is a primitive n-th root ζ ∈ K, one has N(ζ) = ζn = 1. By the
Lemma, there exist an v such that ζ = v/σ(v). Let u = v−1, then
σ(u) = ζu. Hence σ(un) = un ∈ K. Therefore u satisfies xn−a ∈ K[x]
for some a ∈ K.

Moreover, for uζ i and uζj, there is an automorphism sending uζ i to
uζj. So they have the same minimal polynomial p(x) dividing xn − a.
One the other hand, p(x) has n distinct roots uζ i for i = 0, ..., n − 1.
It follows that p(x) = xn − a is irreducible. One has [K(u) : K] = n
and thus F = K(u). ¤
Theorem 3.11.4. Suppose that char(K) = p 6= 0. Then F/K is a
cyclic extension of order n if and only if F = K(u), where u is a root
of an irreducible polynomial xp − x− a ∈ K[x].

Proof. The proof is parallel to the previous one.
Let u be a root of xp − x − a, then all the roots are u + i for i =

0, ..., p− 1. It’s clear that F = K(ζ) is a cyclic extension over K with
Galois group generated by σ such that σ(u) = u + 1.

Conversely, suppose that F/K is a cyclic extension of order n. One
has T (1) = p = 0. By the Lemma, there exist an v such that 1 =
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v − σ(v). Let u = −v, then σ(u) = u + 1. Hence σ(up) = up + 1 and
σ(up − u) = up − u. Therefore u satisfies xp − x − a ∈ K[x] for some
a ∈ K.

Moreover, for u + i and u + j, there is an automorphism sending
uζ i to uζj. So they have the same minimal polynomial p(x) dividing
xp − x − a. One the other hand, p(x) has p distinct roots u + i for
i = 0, ..., p − 1. It follows that p(x) = xp − x − a is irreducible. One
has [K(u) : K] = n and thus F = K(u). ¤

It remains to define norm and trace, and prove the main lemma
3.11.3.

Definition 3.11.5. Let [F : K] be a finite separable extension. Let Σ
be the set of K-embeddings of F into K. For any u ∈ F , we define the
norm, denoted

NF/K(u) := (
∏
σ∈Σ

σ(u)).

Similarly, we define the trace as

TF/K(u) := (Σσ∈Σσ(u)).

Example 3.11.6. If F/K is finite Galois extension, then the set of
all K-embeddings of F is nothing but the Galois group of F (since
F is normal). Therefore, NF/K(u) =

∏
σ∈GalF/K

σ(u) and TF/K(u) =∑
σ∈GalF/K

σ(u)

Proof of Lemma 3.11.3. We only prove that T (u) = 0 implies u =
v − σ(v). The other implication is easy.

Step 1. Find an element z ∈ F with T (z) 6= 0. This is an immediate
consequence of independency of automorphism.

Step 2. We normalize it to get w ∈ F with T (w) = 1. In fact, we
take w := z

T (z)
.

Step 3. Let

v = uw + (u + σ(u))σ(w) + ... + (u + σ(u) + ... + σn−2(u))σn−2(w).

Then by direct computation and T (u) =
∑

σ(u) = 0, we are done.
For the norm, if N(u) = 1, then u 6= 0. Take

v = uy + uσ(u)σ(y) + ... + uσ(u)...σn−1(u)σn−1(y).

By independency of automorphism, there exist a y such that v is non-
zero. One checks that u−1v = σ(v). We are done. ¤

3.12. radical extension.

Definition 3.12.1. F/K is said to be an radical extension if F =
K(u1, ..., un) such that for 1 ≤ i ≤ n, uni

i ∈ K(u1, ..., un−1).
For a polynomial f(x) ∈ K[x]. We say f(x) = 0 is solvable by radical

if its splitting field E is contained in some radical extension.
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Remark 3.12.2. In the definition, it’s not necessary that the splitting
field itself is a radical extension over K.

The main observation is the following:

Proposition 3.12.3. Let F/K be a radical and Galois extension over
K. Write F = K(u1, ..., un) such that for 1 ≤ i ≤ n, uni

i ∈ K(u1, ..., un−1).
Let m =

∏
ni and assume that char(K) - m. Suppose furthermore that

K contains a primitive m-th root of unity. Then GalF/K is solvable.

Proof. Let Ki := K(u1, ..., ui). And let Gi = K ′
i. One sees that K1

is cyclic over K, hence Galois over K. Hence G1 C G0 = GalF/K .
Consider next F/K1 which is radical and Galois. Then K2 is cyclic
over K1 and hence similarly, G2 C G1. Therefore, we have a solvable
series {e} = Gn C Gn−1 C ... C G0 = GalF/K with Gi−1/Gi cyclic. We
are done. ¤

One can actually generalize it to the following general setting:

Theorem 3.12.4. Let F/K be a radical extension, and K ⊂ E ⊂ F .
Then GalE/K is solvable. As a consequence, if f(x) = 0 is solvable by
radical, then Gf is solvable.

Proof. We first reduce to simpler situation.
Step 1. Let G = GalE/K and K0 = G′. It’s clear that F/K0 is radical,
and E/K0 is Galois for GalE/K0 = G′′ = G and G′′′ = G′. Thus F/K0

is radical and E/K0 is Galois with Galois group GalE/K .
We thus replacing K by K0 and assume that E/K is Galois.

Step 2. Reduce to the case that E = F/K is Galois. To see this, let
σ : F → K be an K-embedding. One can show that σ(F ) is again a
radical extension. One can also prove that if F1, F2 ⊂ K are radical
extension over K, then F1F2 is a radical extension over K. Hence let
N be the compositum of σ(F ) for all σ. It follows that N is radical
over K. Moreover, N is normal over K.

Since E/K is Galois, in particular, E is normal over K and E is a
stable intermediate subfield of N/K. Then one has a homomorphism
GalN/K → GalE/K . This is surjective because N is normal. Thus it
suffices to prove that GalN/K is solvable.
Step 3. By the same trick an in Step 1. We may assume that N/K is
Galois. Therefore, it suffices to show that if F/K is Galois and radical,
then GalF/K is solvable.
Step 4. Since F/K is separable, we may assume that (char(K), ni) =
1. Let m =

∏
ni.

Let ζ be a primitive m-th root of unity. We claim that F (ζ) is
Galois over K. Grant this for the time being, then F (ζ) is Galois over
K(ζ) and K(ζ)′ C GalF (ζ)/K . Moreover, GalF (ζ)/K/K(ζ)′ ∼= GalK(ζ)/K .
By Proposition 3.12.3, K(ζ)′ is solvable. K(ζ)/K is cyclotomic, hence
GalK(ζ)/K is solvable. Thus, GalF (ζ)/K is solvable.
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Now F/K is Galois, GalF/K
∼= GalF (ζ)/K/F ′ which is solvable.

Step 5. To prove the claim, suppose that F is a splitting field of
separable polynomial f1, .., fn ∈ K[x]. Then F (ζ) is nothing but a
splitting field of separable polynomials f1, ..., fn, xm − 1. Thus we are
done. ¤
Theorem 3.12.5. Let E be a finite dimensional Galois extension over
K with solvable Galois group. Assume that char(K) - [E : K], then
there is a radical extension F/K containing E.

Proof. We prover by induction on [E : K]. Let n = [E : K] and assume
the theorem is true for all Galois extension of degree < n.

Let ζ be a primitive n-th root of unity. Then E(ζ)/K(ζ) is Galois.
If [E(ζ) : K(ζ)] < n then we are done by induction hypothesis and the
fact that K(ζ)/K is radical.

By replacing E, K by E(ζ), K(ζ) respectively, we my assume that
K has m-th root of unity.

GalE/K is solvable, let H be a subgroup of index q, for some prime
q. Then H ′/K is a cyclic extension, hence a radical extension. By
induction hypothesis, E/H ′ is radical. We are done. ¤
Corollary 3.12.6. Let f(x) ∈ K[x] be a polynomial of degree n > 0.
Suppose that char(K) - n!, then f(x) = 0 is solvable by radical if and
only if Gf is solvable.


