3.10. solving cubic polynomials. In this section, we are going to review classical result on solving polynomials by using non-classical language. I think this experience also serve a good start for Galois theory in general.

Definition 3.10.1. A character from a group G to a field K is group homomorphism $\chi : G \to K^*$. The set of characters is denoted $Hom_{qp}(G, K^*)$.

Let Hom(G, K) be the set of functions from G to K. It's clear that Hom(G, K) is a K-vector space.

Theorem 3.10.2 (E. Artin). $Hom_{gp}(G, K^*)$ is linearly independent in Hom(G, K).

Proof. Suppose on the contrary that $Hom_{gp}(G, K^*)$ is not linearly independent. Pick a linearly dependent subset $\{\chi_1, ..., \chi_n\}$ of minimal n. There are $a_i \in K$ such that $\sum a_i \chi_i = 0$, i.e.

$$\sum a_i \chi_i(g) = 0, \qquad (*)$$

for all $g \in G$. We can rewrite it as

$$\sum a_i \chi_i(gh) = 0, \qquad (**)$$

for all $g, h \in G$. Multiply (*) by $\chi_1(h)$, we get

$$\sum a_i \chi_i(g) \chi_1(h) = 0. \qquad (***)$$

Compare (*) with (***), we get

$$\sum a_i(\chi_i(h) - \chi_1(h))\chi_i(g) = 0 \text{ for all } g \in G.$$

Thus $\sum_{i=2}^{n} a_i(\chi_i(h) - \chi_1(h))\chi_i = 0 \in Hom(G, K)$. It follows that the n-1 elements $\{\chi_2, ..., \chi_n\}$ is linearly dependent, which is a contradiction to the minimality.

Corollary 3.10.3. Let F/K be an extension. The set of K-homomorphisms from F to \overline{K} is linearly independent in the \overline{K} -vector space of linear maps from F to \overline{K} .

Sketch. Take
$$G = F^*$$
.

Let K be a field containing n-th root of unity ζ . Let F/K be a Galois extension with Galois group $\cong \mathbb{Z}_n$ generated by σ . We consider

$$\psi_{\zeta} := 1 + \zeta \sigma + \zeta^2 \sigma^2 + \ldots + \zeta^{n-1} \sigma^{n-1} \in Hom(F, \overline{K}).$$

Any element of the form $\psi(x)$ is called a **Lagrange resolvent**.

By direct computation, we have the following properties.

Proposition 3.10.4. Keep the notation as above, we have:

1. $\sigma(\psi_{\zeta}(x)) = \zeta^{-1}\psi_{\zeta}(x).$ 2. $\psi_{1}(x) \in K.$ 3. $(\psi_{\zeta}(x))^{n} \in K.$ 4. $(\psi_{\zeta}(x))(\psi_{\zeta^{-1}}(x)) \in K.$ 5. $\sum_{\zeta \in \mu_{n}} \zeta^{-r}\psi_{\zeta}(x) = n\sigma^{r}(x).$

Now we can use this technique to solve cubic equations. Let $f(x) = x^3 + px + q \in K[x]$ be an irreducible polynomial with discriminant $D = -4p^3 - 27q^2 \in K$. We assume that K contains a primitive 3-root of unity ζ . We have extension $K \subset L := K[\sqrt{D}] \subset F := K[u_1, u_2, u_3]$. Note that F/L is Galois with Galois group $\cong \mathbb{Z}_3$. **Step 1.** $\psi_{\zeta} \neq 0 \in Hom(F, \overline{K})$, in fact $\psi_{\zeta}(u_1) \neq 0$.

Step 2. $\psi_{\zeta}(u_1) \neq L$ and $(\psi_{\zeta}(u_1))^3 \in L$, thus $F = L[\psi_{\zeta}(u_1)]$. And similarly, $\psi_{\zeta^2}(u_1) \in L$, $(\psi_{\zeta^2}(u_1))^3 \in L$. Moreover, $\psi_{\zeta}(u_1)\psi_{\zeta^2}(u_1) \in L$.

Step 3. Solve $\psi_{\zeta}(u_1), \psi_{\zeta^2}(u_1)$.

Recall that

$$\begin{split} &\Delta := (u_1 - u_2)(u_2 - u_3)(u_3 - u_1) = u_1^2 u_2 + u_2^3 u_3 + u_3^2 u_1 - u_1 u_2^2 - u_2 u_3^2 - u_3 u_1^2. \\ &\psi_{\zeta}(u_1)^3 = u_1^3 + u_2^3 + u_3^3 + 3\zeta(u_1^2 u_2 + u_2^2 u_3 + u_3^2 u_1) + \zeta^2(u_1 u_2^2 + u_2 u_3^2 + u_3 u_1^2) + 6u_1 u_2 u_3 \\ &\text{Let } v_1 = u_1^2 u_2 + u_2^2 u_3 + u_3^2 u_1, v_2 = u_1 u_2^2 + u_2 u_3^2 + u_3 u_1^2, \text{ then} \end{split}$$

 $v_1 + v_2 = (u_1 + u_2 + u_3)(u_1u_2 + u_2u_3 + u_3u_1) - 3u_1u_2u_3 = 3q,$

$$v_1 - v_2 = \Delta$$

Thus $\psi_{\zeta}(u_1)^3$ can be expressed in terms of p, q, Δ . **Step 4.** solve u_1, u_2, u_3 in terms of $\psi_{\zeta}(u_1), \psi_{\zeta^2}(u_1)$. By the property 5 above, we have

$$3u_1 = \psi_1(u_1) + \psi_{\zeta}(u_1) + \psi_{\zeta^2}(u_1),$$

$$3u_2 = 3\sigma(u_1) = \psi_1(u_1) + \zeta^{-1}\psi_{\zeta}(u_1) + \zeta^{-2}\psi_{\zeta^2}(u_1),$$

$$3u_3 = 3\sigma^2(u_1) = \psi_1(u_1) + \zeta^{-2}\psi_{\zeta}(u_1) + \zeta^{-1}\psi_{\zeta^2}(u_1).$$

And note that $\psi_1(u_1) = 0$. So one can solve cubic polynomial explicitly.

3.11. cyclic extension. The discussion in the previous section can be extended to a more general setting.

Definition 3.11.1. We say that an extension is cyclic (resp. abelian) if it's algebraic Galois and $\operatorname{Gal}_{F/K}$ is cyclic (resp. abelian). An cyclic extension of order n is an cyclic extension whose Galois group is isomorphic to \mathbb{Z}_n .

The following theorem characterize cyclic extension except some exceptional case.

Theorem 3.11.2. Suppose that char(K) = 0 or $char(K) = p \nmid n$. Suppose furthermore that there is a primitive n-th root of unity in K, say ζ . Then F/K is a cyclic of order n if and only if F = K(u) where u is a root of irreducible polynomial $x^n - a \in K[x]$.

Before we get into the proof. Let's consider the "difference" between u and $\sigma(u)$ for $\sigma \in \operatorname{Gal}_{F/K}$. Let F/K be a finite Galois extension. Then in this circumstance, norm and trace (which we will define more generally later) are nothing but $N_{F/K}(u) := \prod_{\sigma \in \operatorname{Gal}_{F/K}} \sigma(u)$ and $T_{F/K} := \sum_{\sigma \in \operatorname{Gal}_{F/K}} \sigma(u)$. It's easy to see that $T(u - \sigma(u)) = 0$ and $N(u/\sigma(u)) = 1$. The follows lemma says that the converse is also true for cyclic extension, which will play the central role in the study of cyclic extension.

Lemma 3.11.3. Let F/K be an cyclic extension with σ the generator of the Galois group.

- (1) If $T_{F/K}(u) = 0$, then there exists an $v \in F$ such that $u = v \sigma(v)$.
- (2) (Hilbert's Theorem 90) If $N_{F/K}(u) = 1$, then there exists an $v \in F$ such that $u = v/\sigma(v)$.

Proof of the Theorem 3.11.2. Let u be a root of $x^n - a$, then all the roots are $u\zeta^i$ for i = 0, ..., n - 1. Since $\zeta \in K$. We can produce an element in Galois group by considering $\sigma_i : u \mapsto u\zeta^i$. Thus we have $\{\sigma_i\}_{i=0,...,n-1} \subset \operatorname{Gal}_K F$. It's clear that $\operatorname{Gal}_K F = \{\sigma_i\}_{i=0,...,n-1} = \langle \sigma_1 \rangle$. Thus F = K(u) is a cyclic extension over K.

Conversely, suppose that F/K is a cyclic extension of order n. Since there is a primitive n-th root $\zeta \in K$, one has $N(\zeta) = \zeta^n = 1$. By the Lemma, there exist an v such that $\zeta = v/\sigma(v)$. Let $u = v^{-1}$, then $\sigma(u) = \zeta u$. Hence $\sigma(u^n) = u^n \in K$. Therefore u satisfies $x^n - a \in K[x]$ for some $a \in K$.

Moreover, for $u\zeta^i$ and $u\zeta^j$, there is an automorphism sending $u\zeta^i$ to $u\zeta^j$. So they have the same minimal polynomial p(x) dividing $x^n - a$. One the other hand, p(x) has n distinct roots $u\zeta^i$ for i = 0, ..., n - 1. It follows that $p(x) = x^n - a$ is irreducible. One has [K(u) : K] = n and thus F = K(u).

Theorem 3.11.4. Suppose that $char(K) = p \neq 0$. Then F/K is a cyclic extension of order n if and only if F = K(u), where u is a root of an irreducible polynomial $x^p - x - a \in K[x]$.

Proof. The proof is parallel to the previous one.

Let u be a root of $x^p - x - a$, then all the roots are u + i for i = 0, ..., p - 1. It's clear that $F = K(\zeta)$ is a cyclic extension over K with Galois group generated by σ such that $\sigma(u) = u + 1$.

Conversely, suppose that F/K is a cyclic extension of order n. One has T(1) = p = 0. By the Lemma, there exist an v such that 1 =

56

 $v - \sigma(v)$. Let u = -v, then $\sigma(u) = u + 1$. Hence $\sigma(u^p) = u^p + 1$ and $\sigma(u^p - u) = u^p - u$. Therefore u satisfies $x^p - x - a \in K[x]$ for some $a \in K$.

Moreover, for u + i and u + j, there is an automorphism sending $u\zeta^i$ to $u\zeta^j$. So they have the same minimal polynomial p(x) dividing $x^p - x - a$. One the other hand, p(x) has p distinct roots u + i for i = 0, ..., p - 1. It follows that $p(x) = x^p - x - a$ is irreducible. One has [K(u):K] = n and thus F = K(u).

It remains to define norm and trace, and prove the main lemma 3.11.3.

Definition 3.11.5. Let [F : K] be a finite separable extension. Let Σ be the set of K-embeddings of F into \overline{K} . For any $u \in F$, we define the norm, denoted

$$N_{F/K}(u) := (\prod_{\sigma \in \Sigma} \sigma(u)).$$

Similarly, we define the trace as

$$T_{F/K}(u) := (\Sigma_{\sigma \in \Sigma} \sigma(u)).$$

Example 3.11.6. If F/K is finite Galois extension, then the set of all K-embeddings of F is nothing but the Galois group of F (since F is normal). Therefore, $N_{F/K}(u) = \prod_{\sigma \in \text{Gal}_{F/K}} \sigma(u)$ and $T_{F/K}(u) = \sum_{\sigma \in \text{Gal}_{F/K}} \sigma(u)$

Proof of Lemma 3.11.3. We only prove that T(u) = 0 implies $u = v - \sigma(v)$. The other implication is easy.

Step 1. Find an element $z \in F$ with $T(z) \neq 0$. This is an immediate consequence of independency of automorphism.

Step 2. We normalize it to get $w \in F$ with T(w) = 1. In fact, we take $w := \frac{z}{T(z)}$.

Step 3. Let

$$v = uw + (u + \sigma(u))\sigma(w) + \dots + (u + \sigma(u) + \dots + \sigma^{n-2}(u))\sigma^{n-2}(w).$$

Then by direct computation and $T(u) = \sum \sigma(u) = 0$, we are done. For the norm, if N(u) = 1, then $u \neq 0$. Take

$$v = uy + u\sigma(u)\sigma(y) + \ldots + u\sigma(u)\ldots\sigma^{n-1}(u)\sigma^{n-1}(y).$$

By independency of automorphism, there exist a y such that v is non-zero. One checks that $u^{-1}v = \sigma(v)$. We are done.

3.12. radical extension.

Definition 3.12.1. F/K is said to be an radical extension if $F = K(u_1, ..., u_n)$ such that for $1 \le i \le n$, $u_i^{n_i} \in K(u_1, ..., u_{n-1})$.

For a polynomial $f(x) \in K[x]$. We say f(x) = 0 is solvable by radical if its splitting field E is contained in some radical extension.

Remark 3.12.2. In the definition, it's not necessary that the splitting field itself is a radical extension over K.

The main observation is the following:

Proposition 3.12.3. Let F/K be a radical and Galois extension over K. Write $F = K(u_1, ..., u_n)$ such that for $1 \le i \le n$, $u_i^{n_i} \in K(u_1, ..., u_{n-1})$. Let $m = \prod n_i$ and assume that $char(K) \nmid m$. Suppose furthermore that K contains a primitive m-th root of unity. Then $\operatorname{Gal}_{F/K}$ is solvable.

Proof. Let $K_i := K(u_1, ..., u_i)$. And let $G_i = K'_i$. One sees that K_1 is cyclic over K, hence Galois over K. Hence $G_1 \triangleleft G_0 = \operatorname{Gal}_{F/K}$. Consider next F/K_1 which is radical and Galois. Then K_2 is cyclic over K_1 and hence similarly, $G_2 \triangleleft G_1$. Therefore, we have a solvable series $\{e\} = G_n \triangleleft G_{n-1} \triangleleft \ldots \triangleleft G_0 = \operatorname{Gal}_{F/K}$ with G_{i-1}/G_i cyclic. We are done.

One can actually generalize it to the following general setting:

Theorem 3.12.4. Let F/K be a radical extension, and $K \subset E \subset F$. Then $\operatorname{Gal}_{E/K}$ is solvable. As a consequence, if f(x) = 0 is solvable by radical, then G_f is solvable.

Proof. We first reduce to simpler situation.

Step 1. Let $G = \operatorname{Gal}_{E/K}$ and $K_0 = G'$. It's clear that F/K_0 is radical, and E/K_0 is Galois for $\operatorname{Gal}_{E/K_0} = G'' = G$ and G''' = G'. Thus F/K_0 is radical and E/K_0 is Galois with Galois group $\operatorname{Gal}_{E/K}$.

We thus replacing K by K_0 and assume that E/K is Galois.

Step 2. Reduce to the case that E = F/K is Galois. To see this, let $\sigma: F \to \overline{K}$ be an *K*-embedding. One can show that $\sigma(F)$ is again a radical extension. One can also prove that if $F_1, F_2 \subset \overline{K}$ are radical extension over *K*, then F_1F_2 is a radical extension over *K*. Hence let *N* be the compositum of $\sigma(F)$ for all σ . It follows that *N* is radical over *K*. Moreover, *N* is normal over *K*.

Since E/K is Galois, in particular, E is normal over K and E is a stable intermediate subfield of N/K. Then one has a homomorphism $\operatorname{Gal}_{N/K} \to \operatorname{Gal}_{E/K}$. This is surjective because N is normal. Thus it suffices to prove that $\operatorname{Gal}_{N/K}$ is solvable.

Step 3. By the same trick an in Step 1. We may assume that N/K is Galois. Therefore, it suffices to show that if F/K is Galois and radical, then $\operatorname{Gal}_{F/K}$ is solvable.

Step 4. Since F/K is separable, we may assume that $(char(K), n_i) = 1$. Let $m = \prod n_i$.

Let ζ be a primitive *m*-th root of unity. We claim that $F(\zeta)$ is Galois over *K*. Grant this for the time being, then $F(\zeta)$ is Galois over $K(\zeta)$ and $K(\zeta)' \triangleleft \operatorname{Gal}_{F(\zeta)/K}$. Moreover, $\operatorname{Gal}_{F(\zeta)/K}/K(\zeta)' \cong \operatorname{Gal}_{K(\zeta)/K}$. By Proposition 3.12.3, $K(\zeta)'$ is solvable. $K(\zeta)/K$ is cyclotomic, hence $\operatorname{Gal}_{K(\zeta)/K}$ is solvable. Thus, $\operatorname{Gal}_{F(\zeta)/K}$ is solvable.

58

Now F/K is Galois, $\operatorname{Gal}_{F/K} \cong \operatorname{Gal}_{F(\zeta)/K}/F'$ which is solvable. **Step 5.** To prove the claim, suppose that F is a splitting field of separable polynomial $f_1, ..., f_n \in K[x]$. Then $F(\zeta)$ is nothing but a splitting field of separable polynomials $f_1, ..., f_n, x^m - 1$. Thus we are

done.

Theorem 3.12.5. Let E be a finite dimensional Galois extension over K with solvable Galois group. Assume that $char(K) \nmid [E : K]$, then there is a radical extension F/K containing E.

Proof. We prover by induction on [E : K]. Let n = [E : K] and assume the theorem is true for all Galois extension of degree < n.

Let ζ be a primitive *n*-th root of unity. Then $E(\zeta)/K(\zeta)$ is Galois. If $[E(\zeta) : K(\zeta)] < n$ then we are done by induction hypothesis and the fact that $K(\zeta)/K$ is radical.

By replacing E, K by $E(\zeta), K(\zeta)$ respectively, we my assume that K has *m*-th root of unity.

 $\operatorname{Gal}_{E/K}$ is solvable, let H be a subgroup of index q, for some prime q. Then H'/K is a cyclic extension, hence a radical extension. By induction hypothesis, E/H' is radical. We are done.

Corollary 3.12.6. Let $f(x) \in K[x]$ be a polynomial of degree n > 0. Suppose that $char(K) \nmid n!$, then f(x) = 0 is solvable by radical if and only if G_f is solvable.