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3.10. solving cubic polynomials. In this section, we are going to
review classical result on solving polynomials by using non-classical
language. I think this experience also serve a good start for Galois
theory in general.

Definition 3.10.1. A character from a group G to a field K is
group homomorphism x : G — K*. The set of characters is denoted
Homg,(G, K*).

Let Hom(G, K) be the set of functions from G to K. It’s clear that
Hom(G, K) is a K-vector space.

Theorem 3.10.2 (E. Artin). Hom,,(G, K*) is linearly independent in
Hom(G, K).

Proof. Suppose on the contrary that Hom,,(G, K*) is not linearly in-
dependent. Pick a linearly dependent subset {x1, ..., X} of minimal n.
There are a; € K such that > a;x; =0, i.e.

Z azXz(Q) = 07 (*)
for all g € G. We can rewrite it as

Z a;xi(gh) = 0, ()
for all g, h € G. Multiply (*) by x1(h), we get

Z aixi(g)x1(h) = 0. (3 %)

Compare () with (% * %), we get

> ai(xi(h) = x1(h))xi(g) = 0 for all g € G.
Thus Y"1, a;(xi(h) — x1(h))x; = 0 € Hom(G, K). It follows that the

n — 1 elements {xs, ..., X»} is linearly dependent, which is a contradic-
tion to the minimality. O

Corollary 3.10.3. Let F/K be an extension. The set of K-homomorphisms
from F to K is linearly independent in the K-vector space of linear
maps from F to K.

Sketch. Take G = F*. O

Let K be a field containing n-th root of unity {. Let F/K be a
Galois extension with Galois group = 7Z,, generated by . We consider

Ve =1+ Co+ o+ ...+ ("o € Hom(F, K).

Any element of the form 1 (z) is called a Lagrange resolvent.
By direct computation, we have the following properties.
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Proposition 3.10.4. Keep the notation as above, we have:
L o(ie(x)) = ().

2. Y1(z) € K.

3. (Ye(z))™ € K.

4 (Pe(2)) (e (2) € K.

5. ZCEM C"e(x) = no'(z).

Now we can use this technique to solve cubic equations. Let f(z) =
2% + pr + ¢ € K|[z] be an irreducible polynomial with discriminant
D = —4p3 — 27¢*> € K. We assume that K contains a primitive 3-root
of unity ¢. We have extension K C L := K[v/D] C F := K|[uy, us, us].
Note that F'/L is Galois with Galois group = Zs.

Step 1. ¢ # 0 € Hom(F, K), in fact 1 (u;) # 0.

Step 2. ¢¢(u1) # L and (¢¢(u1))® € L, thus F = L{tp¢(uq)].
And similarly, ¢e2(u1) € L, (¢c2(u1))* € L. Moreover, ¢h¢(uq)hez(ur) €
L

Step 3. Solve ¥¢(uq),¢c2(uq) -
Recall that

A = (ug—us) (ug—uz) (ug—uy) = uiug+uduz+uiug —ugus—ugui —uzus.
Ve(ur)? = ui+us+ui+3¢ (uugtusus+uzuy )+ (g us+ugui+uzu?) +6us ugus.
Let v = uduy + udug + udui, vy = ugu3 + usui + uzu?, then
V1 + vy = (Ul + ug + u3)(u1u2 + U2U3 + U3U1) — 3U1UQU3 = 3(],
V1 — U2 = A.

Thus ¢ (u1)? can be expressed in terms of p, g, A.
Step 4. solve uy, Uz, us in terms of ¢ (u1), ez (u1).
By the property 5 above, we have

Bur = P1(ur) + e(ur) + e (ur),
3ug = 30 (uy) = ¥y (ur) + ¢ e (uy) + C_Ql/}c?(ul),
Bug = 30° (ur) = 1 (wr) + e (ur) + ¢ Mz (wa).

And note that ¢ (u1) = 0. So one can solve cubic polynomial explicitly.

3.11. cyclic extension. The discussion in the previous section can be
extended to a more general setting.

Definition 3.11.1. We say that an extension is cyclic (resp. abelian)
if it’s algebraic Galois and Galp/k is cyclic (resp. abelian). An cyclic
extension of order n is an cyclic extension whose Galois group is iso-
morphic to Z,,.

The following theorem characterize cyclic extension except some ex-
ceptional case.
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Theorem 3.11.2. Suppose that char(K) = 0 or char(K) = p 1 n.
Suppose furthermore that there is a primitive n-th root of unity in K,
say . Then F/K is a cyclic of order n if and only if F = K(u) where
w is a root of irreducible polynomial x™ — a € K|x].

Before we get into the proof. Let’s consider the ”difference” be-
tween u and o(u) for o € Galp/k. Let F//K be a finite Galois exten-
sion. Then in this circumstance, norm and trace (which we will define

more generally later) are nothing but Np/k(u) := HoeGalF/K o(u) and

Trik = ZUEQ&IF/K o(u). It’s easy to see that T'(u — o(u)) = 0 and
N(u/o(u)) = 1. The follows lemma says that the converse is also true
for cyclic extension, which will play the central role in the study of
cyclic extension.

Lemma 3.11.3. Let F'//K be an cyclic extension with o the generator
of the Galois group.

(1) If Tp/x(u) = 0, then there exists an v € F such that u =
v—o(v).

(2) (Hilbert’s Theorem 90) If Np/k(u) = 1, then there exists an
v € F such that u=v/o(v).

Proof of the Theorem 3.11.2. Let u be a root of ™ — a, then all the
roots are u¢® for i = 0,...,n — 1. Since ( € K. We can produce an
element in Galois group by considering o; : u — u¢’. Thus we have
{0i}iz0..n1 C GalgF. It’s clear that GalgF = {0;}im0. . n-1 =<
o1 >. Thus F' = K(u) is a cyclic extension over K.

Conversely, suppose that F//K is a cyclic extension of order n. Since
there is a primitive n-th root ¢ € K, one has N({) = (" = 1. By the
Lemma, there exist an v such that ¢ = v/o(v). Let u = v™!, then
o(u) = Cu. Hence o(u™) = u™ € K. Therefore u satisfies 2" —a € K|z]
for some a € K.

Moreover, for u¢* and u¢’, there is an automorphism sending u(? to
u¢?. So they have the same minimal polynomial p(z) dividing 2" — a.
One the other hand, p(x) has n distinct roots u® for i = 0,...,n — 1.
It follows that p(z) = 2™ — a is irreducible. One has [K(u) : K] =n
and thus F' = K(u). d

Theorem 3.11.4. Suppose that char(K) = p # 0. Then F/K is a
cyclic extension of order n if and only if F = K(u), where u is a root
of an irreducible polynomial 2 — x — a € K|x].

Proof. The proof is parallel to the previous one.

Let u be a root of 2P — x — a, then all the roots are u + ¢ for ¢ =
0,...,p— 1. It’s clear that F' = K(() is a cyclic extension over K with
Galois group generated by o such that o(u) = u + 1.

Conversely, suppose that F'/K is a cyclic extension of order n. One
has T(1) = p = 0. By the Lemma, there exist an v such that 1 =
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v —o(v). Let u = —v, then o(u) = u+ 1. Hence o(u”) = u? + 1 and
o(uP —u) = u? — u. Therefore u satisfies ¥ — x — a € K[x] for some
a€ K.

Moreover, for u + i and u + j, there is an automorphism sending
uC® to u¢?. So they have the same minimal polynomial p(z) dividing
2P — x — a. One the other hand, p(x) has p distinct roots u + ¢ for
i=0,..,p— 1. It follows that p(x) = 2P — x — a is irreducible. One
has [K(u) : K] = n and thus F' = K(u). d

It remains to define norm and trace, and prove the main lemma
3.11.3.

Definition 3.11.5. Let [F': K] be a finite separable extension. Let ¥
be the set of K-embeddings of F' into K. For any u € F, we define the
norm, denoted

Niyc(u) = (] ] o(w).
oEX
Similarly, we define the trace as

Trik(u) == (Lgexo(u)).

Example 3.11.6. If F/K is finite Galois extension, then the set of
all K-embeddings of F is nothing but the Galois group of F (since
F is normal). Therefore, Np/k(u) = HUEGaIF/K o(u) and Tp/(u) =

ZO’EG&IF/K U(U)

Proof of Lemma 3.11.3. We only prove that T'(u) = 0 implies u =
v — o(v). The other implication is easy.

Step 1. Find an element z € F with T'(z) # 0. This is an immediate
consequence of independency of automorphism.

Step 2. We normalize it to get w € F' with T'(w) = 1. In fact, we
take w 1= ﬁ

Step 3. Let

v=uw+ (ut+ow)o(w)+ ...+ (u+ou)+..+0"2(u)o" (w).
Then by direct computation and T'(u) = > o(u) = 0, we are done.
For the norm, if N(u) = 1, then u # 0. Take
v =uy +uc(w)o(y) + ... + uo(u)..c" (u)o™ (y).

By independency of automorphism, there exist a y such that v is non-
zero. One checks that u™'v = o(v). We are done. O

3.12. radical extension.

Definition 3.12.1. F/K is said to be an radical extension if F' =
K(uy,...,u,) such that for 1 <i<n, u;" € K(uy,...,up_1).

For a polynomial f(x) € K[z]. We say f(x) = 0 is solvable by radical
if its splitting field E is contained in some radical extension.
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Remark 3.12.2. In the definition, it’s not necessary that the splitting
field itself is a radical extension over K.

The main observation is the following:

Proposition 3.12.3. Let F/K be a radical and Galois extension over
K. Write F = K (uy, ..., u,) such that for1 <i <n,u;" € K(uy, ..., up_1).
Let m = [[ n; and assume that char(K) t m. Suppose furthermore that
K contains a primitive m-th root of unity. Then Galg i is solvable.

Proof. Let K; := K(uy,...,u;). And let G; = K. One sees that K,
is cyclic over K, hence Galois over K. Hence G; < Gy = Galp/k.
Consider next F'/K; which is radical and Galois. Then K5 is cyclic
over K and hence similarly, G5 <1 G;. Therefore, we have a solvable
series {e} = G, < Gpq < ... < Gy = Galp)i with G;_1/G; cyclic. We
are done. O

One can actually generalize it to the following general setting:

Theorem 3.12.4. Let F/K be a radical extension, and K C E C F.
Then Galg/k is solvable. As a consequence, if f(x) = 0 is solvable by
radical, then Gy is solvable.

Proof. We first reduce to simpler situation.

Step 1. Let G = Galg/k and Ky, = G'. It’s clear that F'/ K| is radical,
and /K, is Galois for Galg/x, = G" = G and G" = G'. Thus F/K,
is radical and F /K, is Galois with Galois group Galg /K-

We thus replacing K by Ky and assume that £/K is Galois.

Step 2. Reduce to the case that £ = F/K is Galois. To see this, let
o : F — K be an K-embedding. One can show that o(F) is again a
radical extension. One can also prove that if F}, F, C K are radical
extension over K, then FiF) is a radical extension over K. Hence let
N be the compositum of o(F) for all 0. It follows that N is radical
over K. Moreover, N is normal over K.

Since F/K is Galois, in particular, E is normal over K and E is a
stable intermediate subfield of N/K. Then one has a homomorphism
Galy/xk — Galg k. This is surjective because N is normal. Thus it
suffices to prove that Galy/x is solvable.

Step 3. By the same trick an in Step 1. We may assume that N/K is
Galois. Therefore, it suffices to show that if F'//K is Galois and radical,
then Galp/ g is solvable.

Step 4. Since F//K is separable, we may assume that (char(K),n;) =
1. Let m =[] n;.

Let ¢ be a primitive m-th root of unity. We claim that F(() is
Galois over K. Grant this for the time being, then F({) is Galois over
K(¢) and K(¢)" < Galp()/x. Moreover, Galp(y/x /K (¢) = Galg(e)/k-
By Proposition 3.12.3, K(()’ is solvable. K({)/K is cyclotomic, hence
Galg () K is solvable. Thus, Galp ),k is solvable.
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Now F/K is Galois, Galp/x = Galp()/k/F' which is solvable.
Step 5. To prove the claim, suppose that F' is a splitting field of
separable polynomial fi,.., f, € K[z]. Then F(¢) is nothing but a
splitting field of separable polynomials fi, ..., f,, 2™ — 1. Thus we are
done. U

Theorem 3.12.5. Let E be a finite dimensional Galois extension over
K with solvable Galois group. Assume that char(K) 1 [E : K|, then
there is a radical extension F/K containing E.

Proof. We prover by induction on [E : K|. Let n = [E : K] and assume
the theorem is true for all Galois extension of degree < n.

Let ¢ be a primitive n-th root of unity. Then E(¢)/K(() is Galois.
If [E(¢) : K(¢)] < n then we are done by induction hypothesis and the
fact that K(¢)/K is radical.

By replacing E, K by E((), K({) respectively, we my assume that
K has m-th root of unity.

Galg/k is solvable, let H be a subgroup of index ¢, for some prime
q. Then H'/K is a cyclic extension, hence a radical extension. By
induction hypothesis, £//H’ is radical. We are done. U

Corollary 3.12.6. Let f(z) € K|x] be a polynomial of degree n > 0.
Suppose that char(K) t n!, then f(x) = 0 is solvable by radical if and
only if Gy 1is solvable.



