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3.8. finite fields. The Galois theory on finite fields is comparatively
easy and basically governed by Frobenius map.

Recall that given a finite field F of q elements, it’s prime field must
be of the form Fp for some prime p. Let n = [F : Fp], then |F | = pn.

Theorem 3.8.1. F is a finite field with pn elements if and only if F
is a splitting field of xpn − x over Fp.

Sketch. Recall that F ∗ is a multiplicative group of order pn− 1. Hence
it’s easy to see that every element u ∈ F satisfying xpn − x. Thus
element of F are exactly roots of xpn − x, therefore, F is a splitting
field of xpn − x over Fp.

Conversely, if F is a splitting field of xpn − x over Fp. Let E ⊂ F be
the subset of all roots of xpn − x. One can check that E is a subfield
(containing Fp and all roots). By definition of splitting field, E is a
splitting field, and E = F . So |F | = |E| ≤ pn. However, notice that
xpn − x is separable. So |F | = pn. ¤
Proposition 3.8.2. Let F be a finite field and F/K is an extension.
Then F/K is Galois. The Galois group is cyclic, generated by Frobenius
map.

Proof. We shall prove the case that K = Fp. For general K, Fp ⊂ K ⊂
F . Since F/Fp is Galois, then F/K is also Galois with Galois group
K ′ < GalFpF also a cyclic group.

Now we consider F/Fp, and |F | = pn. Since F is a splitting field of
a separable polynomial xpn − x over Fp, F is Galois over Fp.

The Galois group GalFpF has order [F : Fp] = n. Consider the
Frobenius map ϕ : a → ap, which is clearly a Fp-automorphism. So
ϕ ∈ GalFpF . Note that order of ϕ is n. So GalFpF can only be the
cyclic group generated by ϕ. ¤
3.9. cyclotomic extension. We now start the study of cyclotomic
extension.

Definition 3.9.1. A cyclotomic extension of order n over K is a split-
ting field of xn − 1.

Remark 3.9.2. If char(K) = p and n = prm, then xn−1 = (xm−1)pr
.

Hence we may assume that either char(K) = 0 or char(K) = p - n in
the study of cyclotomic extension.

The main theorem is the following:

Theorem 3.9.3. Keep the notation as above. Then we have

(1) F = K(ζ), where ζ is a primitive n-th root of unity.
(2) F/K is Galois whose Galois group GalF/K can be identified as

a subgroup of Z∗n.
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(3) If n is prime, then GalF/K is cyclic. More general, is n = pk

with p 6= 2, then then GalF/K is cyclic.

Proof. Let S := {u ∈ F |un = 1}. And let n′ be the maximal order of
elements in S. Clearly, n′ ≤ n It’s clear that S is an abelian multi-
plicative group. Therefore, it’s easy to see that order of elements in S
divides n′. It follows that un′ = 1 for all u ∈ S. Hence |S| ≤ n′.

Since we assume that (n, char(K)) = 1, therefore xn−1 is separable.
It follows that roots of xn − 1 are all distinct, hence |S| = n. One sees
that n = n′, therefore, there are elements of order n in S, denoted ζ.
It follows that F = K(S) = K(ζ).

For any σ ∈ GalF/K , σ(ζ) ∈ S. Hence σ(ζ) = ζ i for some i. There-
fore, we have a natural map φ : GalF/K → Zn by φ(σ) = i if σ(ζ) = ζ i.
Note that if ζ i is not a primitive n-th root of unity, then K(ζ i) is not
the splitting field of xn − 1, hence not equal to K(ζ), which is absurd.
Thus sigma we conclude that ζ i is a primitive n-th root of unity. It’s
easy to see that this is equivalent to (i, n) = 1. Thus φ : GalF/K → Z∗n
is an injective group homomorphism.

Lastly, if n = pk with p 6= 2 or if n = 2, 4, then Z∗n is cyclic. Hence
every subgroup is cyclic. ¤

The structure of cyclotomic extension is thus determined by the
primitive n-th root of unity. It’s then natural to ask the degree of
such extension and their minimal polynomials.

Definition 3.9.4. If charK - n, then the n-th cyclotomic polyno-
mial over K is defined as:

gn(x) :=
∏

ζi: prim. n-th root of 1

(x− ζi).

Proposition 3.9.5. We have the following:
1. xn − 1 =

∏
d|n gd(x).

2. gn(X) ∈ P [x], where P denoted the prime field. Moreover, if
charK = 0, we identify P = Q, then gn(x) ∈ Z[x].
3. deg(gn(x)) = ϕ(n), where ϕ denotes the Euler φ-function.

Proof. (3) is clear from the definition.
For (1), we consider the following decomposition of sets

{ζ i}i=0,...,n−1 = ∪d|n{ζ i|o(ζ i) = d}.
Note that o(ζ i) = d implies that ζ i is a primitive d-th root of unity.
Thus we define g′d(x) :=

∏
o(ζi)=d(x− ζ i), and then g′d(x)|gd(x). By the

decomposition, we have

xn − 1 =
∏

i=0,...,n−1

(x− ζ i) =
∏

d|n
g′d(x).



52

Computing degrees, we have

n =
∑

d|n
deg(g′d(x)) ≤

∑

d|n
deg(gd(x)) =

∑

d|n
ϕ(d) = n.

Therefore, g′d(x) = gd(x).
To see (2), we prove by induction on n. We assume that gd(x) ∈ P [x]

for all d < n. We can write xn − 1 = gn(x)f(x) ∈ F [x]. In P [x], we
have xn−1 = f(x)q(x)+r(x) by the division algorithm. We shall prove
that r(x) = 0 and thus gn(x) = q(x) ∈ P [x] by the unique factorization
of F [x].

It suffices to show that r(x) = 0. To this end, note that f(x)|xn − 1
in F [x], and thus f(x)|r(x) in F [x]. However, deg(r(x)) < deg(f(x))
unless r(x) = 0. This completes the proof of (2).

When char(K) = 0, similar inductive argument plus Gauss Lemma
will work. We leave it to the readers. ¤

Finally, if K = Q then the cyclotomic extension behave even nicer.

Proposition 3.9.6. F = Q(ζ) be the n-th cyclotomic extension over
Q. Then
1. gn(x) is irreducible.
2. [F : bQ] = ϕ(n).
3. GalQF ∼= Z∗n.

Example 3.9.7.

Consider the 3-rd cyclotomic extension over F7. Then g3(x) = x3−1
x−1

=
(x− 2)(x− 4) is not irreducible. ¤

Proof. Asuuming (1), then F = Q[ζ] is generated by ζ, where minimal
polynomial of ζ over Q is gn(x). Thus [Q[ζ] : Q] = deg(gn(x)) =
ϕ(n). Morover, for every i ∈ Z∗n, the map ζ 7→ ζ i produces an Q-
automorphism of F . Thus (3) follows.

It thus suffices to prove (1). Recall that gn(x) ∈ Z[x]. If gn(x) =
f(x)h(x) ∈ Z[x], where f(x) is an irreducible polynomial with f(ζ) = 0.
We claim that ζp is also a root of f(x) for all (p, n) = 1. Grant this
claim, then by this process, we can conclude that ζ i is a root of f(x)
for all (i, n) = 1. Therefore, f(x) = gn(x) is irreducible.

We now prove the claim. Suppose on the contrary that ζp is not a
root of f(x). Then it’s a root of h(x). We have h(ζp) = 0. Hence ζ is
a root of h(xp). Since f(x) is irreducible, it’s minimal polynomial of ζ
over Q. We have f(x)|h(xp). Thus we can write h(xp) = f(x)k(x) for
some k(x) in Q[x]. By Gauss’ Lemma, this equation holds in fact in
Z[x]. We now consider ring homomorphism :̄Z[x] → Zp[x]. Then

(h(x))p = h(xp) = f(x)k(x).
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Thus g.c.d(h(x), h(x)) 6= 1 in Zp[x]. It follows that

xn − 1 = (
xn − 1

gn(x)
)f(x)h(x)

has multiple roots. But xn − 1
′
= nx̄n−1 6= 0. So this is the required

contradiction. ¤


