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3.8. finite fields. The Galois theory on finite fields is comparatively
easy and basically governed by Frobenius map.

Recall that given a finite field F' of ¢ elements, it’s prime field must
be of the form F, for some prime p. Let n = [F' : F,], then |F| = p™.

Theorem 3.8.1. F' is a finite field with p™ elements if and only if F
is a splitting field of 2" — x over F,.

Sketch. Recall that F* is a multiplicative group of order p™ — 1. Hence
it’s easy to see that every element u € F satisfying 27" — z. Thus
element of F' are exactly roots of 2" — z, therefore, F' is a splitting
field of 27" — x over F,.

Conversely, if F is a splitting field of 27" — z over F,. Let E C F be
the subset of all roots of 27" — 2. One can check that E is a subfield
(containing FF,, and all roots). By definition of splitting field, £ is a
splitting field, and £ = F. So |F| = |E| < p". However, notice that
xP" — x is separable. So |F| = p". O

Proposition 3.8.2. Let F be a finite field and F/K is an extension.
Then F/K is Galois. The Galois group is cyclic, generated by Frobenius
map.

Proof. We shall prove the case that K = I,. For general K, F, C K C
F. Since F/F, is Galois, then F/K is also Galois with Galois group
K" < Galg, F also a cyclic group.

Now we consider F'/F,, and |F| = p”. Since F is a splitting field of
a separable polynomial 27" — x over F,, F' is Galois over F,.

The Galois group Galg, F' has order [F' : F,] = n. Consider the
Frobenius map ¢ : a — a”, which is clearly a Fj-automorphism. So
¢ € Galg,F'. Note that order of ¢ is n. So Galg,F' can only be the
cyclic group generated by . U

3.9. cyclotomic extension. We now start the study of cyclotomic
extension.

Definition 3.9.1. A cyclotomic extension of order n over K is a split-
ting field of x™ — 1.

Remark 3.9.2. Ifchar(K) = p andn = p"m, then z"—1 = (z™—1)7".
Hence we may assume that either char(K) =0 or char(K) =p{n in
the study of cyclotomic extension.

The main theorem is the following:

Theorem 3.9.3. Keep the notation as above. Then we have
(1) F = K(C), where ( is a primitive n-th root of unity.
(2) F/K s Galois whose Galois group Galp/k can be identified as
a subgroup of Z;,.
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3) If n is prime, then Galp,i is cyclic. More general, is n = p*
/
with p # 2, then then Galp,k is cyclic.

Proof. Let S := {u € F|u™ = 1}. And let n’ be the maximal order of
elements in S. Clearly, n’ < n It’s clear that S is an abelian multi-
plicative group. Therefore, it’s easy to see that order of elements in §
divides n'. It follows that «™ = 1 for all u € S. Hence |S| < n’.

Since we assume that (n, char(K)) = 1, therefore 2™ — 1 is separable.
It follows that roots of 2 — 1 are all distinct, hence |S| = n. One sees
that n = n’/, therefore, there are elements of order n in S, denoted (.
It follows that F' = K(S) = K(().

For any o € Galp/k, 0(¢) € S. Hence o(¢) = (' for some i. There-
fore, we have a natural map ¢ : Galp/x — Z,, by ¢(0) =i if o(¢) = ("
Note that if ¢* is not a primitive n-th root of unity, then K(¢*) is not
the splitting field of ™ — 1, hence not equal to K (), which is absurd.
Thus sigma we conclude that ¢* is a primitive n-th root of unity. It’s
easy to see that this is equivalent to (i,n) = 1. Thus ¢ : Galp/x — 7Zj,
is an injective group homomorphism.

Lastly, if n = p* with p # 2 or if n = 2,4, then Z? is cyclic. Hence
every subgroup is cyclic. Il

The structure of cyclotomic extension is thus determined by the
primitive n-th root of unity. It’s then natural to ask the degree of
such extension and their minimal polynomials.

Definition 3.9.4. If charK { n, then the n-th cyclotomic polyno-
mial over K is defined as:

gn(x) = H (x — ().

(it prim. n-th root of 1

Proposition 3.9.5. We have the following:

L 2" —1=[],, 9a(z).

2. gn(X) € Plz], where P denoted the prime field. Moreover, if
charK = 0, we identify P = Q, then g,(x) € Z[x].

3. deg(gn(x)) = @(n), where ¢ denotes the Euler ¢-function.

Proof. (3) is clear from the definition.
For (1), we consider the following decomposition of sets

Note that o((*) = d implies that ¢* is a primitive d-th root of unity.
Thus we define gy(x) = [],ci)—q(z — ("), and then g¢}(z)|ga(z). By the
decomposition, we have

1= [ @-¢)=]s@.
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Computing degrees, we have

n=> deg(gy(x)) <> deg(ga(x)) = o(d) =n.

din din din

Therefore, ¢/(x) = ga(z).

To see (2), we prove by induction on n. We assume that gq4(x) € P|x]
for all d < n. We can write 2" — 1 = g,(z)f(z) € Flz]. In Plz|, we
have " —1 = f(x)q(z)+r(x) by the division algorithm. We shall prove
that r(z) = 0 and thus g,(z) = ¢(z) € P|z] by the unique factorization
of Flx].

It suffices to show that r(z) = 0. To this end, note that f(z)z™ — 1
in Flz], and thus f(x)|r(x) in Flz]. However, deg(r(z)) < deg(f(x))
unless 7(z) = 0. This completes the proof of (2).

When char(K) = 0, similar inductive argument plus Gauss Lemma
will work. We leave it to the readers. U

Finally, if K = Q then the cyclotomic extension behave even nicer.

Proposition 3.9.6. F = Q(() be the n-th cyclotomic extension over
Q. Then

1. gn(z) is irreducible.

2. [F: bQ] = p(n).

3. GalgF = Z;.

Example 3.9.7.

Consider the 3-rd cyclotomic extension over F7. Then g3(z) = = =
(x — 2)(x — 4) is not irreducible. O

Proof. Asuuming (1), then F' = Q|[(] is generated by ¢, where minimal
polynomial of ¢ over Q is g,(z). Thus [Q[(] : Q] = deg(gn(x)) =
©(n). Morover, for every i € Z%, the map ¢ — (" produces an Q-
automorphism of F. Thus (3) follows.

It thus suffices to prove (1). Recall that g,(z) € Z[z]. If g,(z) =
f(z)h(x) € Z[x], where f(z) is an irreducible polynomial with f({) = 0.
We claim that ¢? is also a root of f(z) for all (p,n) = 1. Grant this
claim, then by this process, we can conclude that ¢ is a root of f(z)
for all (i,n) = 1. Therefore, f(x) = g,(z) is irreducible.

We now prove the claim. Suppose on the contrary that (? is not a
root of f(z). Then it’s a root of h(x). We have h(¢?) = 0. Hence ( is
a root of h(aP). Since f(z) is irreducible, it’s minimal polynomial of ¢
over Q. We have f(z)|h(2?). Thus we can write h(a?) = f(x)k(x) for
some k(z) in Q[z]. By Gauss’ Lemma, this equation holds in fact in
Z|x]. We now consider ring homomorphism Z[z] — Z,[z]. Then

(h(x))" = h(zP) = f(x)k(z).




53

Thus g.c.d(h(z),h(x)) # 1 in Z,[x]. It follows that
" —1

=1 = (%—(x))f(fﬂ)h(-’ﬂ)

has multiple roots. But z" — 1 = nznt = 0. So this is the required
contradiction. O




