45

Dec. 1, 2006

Remark 3.6.8. Some of the result we proved still true in a more gen-
eral setting. We list some here:

(1) If F/K is an extension, and an intermediate field E is stable,
then E' <1 Galp/k.

(2) Let F/K be an extension. If N < Galp/, then H' is stable.

(3) If F/K is Galois, and E is a stable intermediate field, then E is
Galois over K. (finite-dimensional assumption is unnecessary
here)

(4) An intermediate field E is algebraic and Galois over K, then E
15 stable.

We conclude this section with the following theorem concerning the
relation between Galois extension, normal extension and splitting fields.

Definition 3.6.9. An irreducible polynomial f(z) € K[x] is said to be
separable if its roots are all distinct in K.

Let F' be an extension over K and u € F' is algebraic over K. Then
u 18 separable over K if its minimal polynomial is separable.

An extesnion F over K is separable if every element of F' is separable
over K.

Theorem 3.6.10. Let F//K be an extension, then the following are
equivalent

(1) F is algebraic and Galois over K.

(2) F is separable over K and F' is a splitting field over K of a set
S of polynomials.

(3) F is a splitting field of separable polynomials in K[X].

(4) F/K is normal and separable.

Proof. Fix u € F with minimal polynomail p(x) over K. Let {u =
uy, ..., u,} be distinct roots of p(z) in F. For any o, then o permutes
{u = uy,...,u.}. Thus f(z) = [[,_,(z — w) is invariant under o.
Hence f(x) € Klz|. It follows that f(z) = p(z). This proved that
(1) = (2),(3), (4).

One notices that (2) < (4). Thus it remains to show that (2) = (3),
and (3) = (1).

For (2) = (3), let f(z) € S and let g(x) be an monic irreducible
component of f(z). Since f(z) splits in F, it’s clear that g(z) is an
minimal polynomial of some element in F. Moreover, since F/K is
separable, g(x) is separable. One sees that F' is in fact a splitting field
of such g(x)’s.

For (3) = (1), we first note that F'/K is algebraic since F' is a split-
ting field. We shall prove that (4) = (1). The implication (3) — (4)
follows from a general fact about separable extension that an algebraic
extension F/K is separable if F' is generated by separable elements.
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To this end, pick any u € F' — K, with minimal polynomial p(x) of
degree > 2 and separable. Hence there is a different root, say v, of p(x)
in . It’s natural to consider the K-isomorphism o : K(u) — K(v).
Which can be extended to & : F — K. Since F is normal, & is an
automorphism of F', hence in Galp/x sending v to v # u. So F/K is

Galois.
OJ

3.7. Galois group of a polynomial. In this section, we are going
to study Galois group of a polynomial. We will define this notion in
general and study polynomial of degree 3,4 in more detail.

Definition 3.7.1. Let f € K[x] be a polynomial with splitting field F.
The Galois group of f(x), denoted Gy is the Galois group of F//K.

The Galois group of a polynomial have some basic properties.

Proposition 3.7.2. Let f(z) be a polynomial of degree n, then Gy —
Sn. Thus one can viewed Gy as a subgroup of Sy,.

If f(x) is irreducible and separable, then Gy is transitive and |G| is
divided by n.

Sketch of the proof. Let {uy,...,u,} be roots of f(x) in F. For o € Gy,
o(u;) = u;. Hence o gives a permutation of r elements. It follows that
G can be viewed as a subgroup of S, hence S,,.

(r could possibly less than n because there might have multiple roots
in general).

Now if f(z) is separable. Then we have distinct roots {uy, ..., u,} in
F. For any u;, we have K[u;] = K[z]/(f(x)) since f(x) is irreducible.
If follows that there is a K-isomorphism o : K[u;| — K[z]/(f(z)) —
K[uj] for all i, j. sigma gives an K-embedding K [u;] — K[u,] = K and
extended to a K-embedding & : ' — K. Since F is normal, 5(F) = F
(cf. Theorem 7). Thus ¢ € Gy and 7(u;) = o(u;) = u;j. Therefore, G
is transitive.

Moreover, since K C K[u;] C F. So |G| = [F : K| = [F: K[u,]]n
is divided by n. O

So now, we discuss irreducible separable polynomials of small degree.
One might wondering how do we know a polynomial is separable or not.
We have the following easy criteria:

Proposition 3.7.3. Let f(x) € K|x] be an irreducible polynomial The
following are equivalent:
1. f(x) is separable.
2. (f(x), f'(x)) = 1in K[z]
3. (f(z), f'(x)) = 1in K[z]
4. f'(x) #0
Recall that when f(x) = a;x", then f'(x) is its formal differentia-
tion which is f'(x) == > ia;x" L.
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Proof. It f(x) is separable, then f(z) = [[_,(x — u;) with distinct
i in K[z]. Thus f'(z) = 3 =) f (£(2), f/(2)) # 1 in Kla],
then = — | f'(x) for some i. However, f'(u;) = [[;;(u; —w;) # 0, a
contradiction.

Conversely, if f(z) is not separable, then f(x) = [];_;(z —u;)* with
some a; > 2. Let’s say a; > 2. Then it’s clear that (z — u;) is a factor
of f'(x) as well. Hence (f(z), f'(x)) # 1. This proved the equivalence
of (1) and (2).

To see the equivalence of (2) and (3). Note that if (f(z), f'(z)) =1
in Klz], then 1 = f(z)s(x) + f'(x)t(x) for some s(x),t(x) € K[z ]
One can view this in K[z] and thus conclude that (f(x), f'(z)) =
in K[z]. On the other hand, if (f(z), f'(z)) = d(z) # 1 in K[z ]
then d(z) = f(x)s(x) + f'(x)t(x) for some s(x),t(x) € K[z]. One can
view this in K[z] and thus conclude that d(z)|(f(x), f/(z)) in K[z]. In
particular, (f(x), f'(z)) # 1 in K[z]

Now finally, since f(x) is irreducible, (f(x), f'(z)) could only be 1 or
f(z). Since f(x)|f'(x) if and only f’'(z) = 0. Thus we are done. O

One notice that if charK # 0, then an irreducible polynomial is
always separable. When charK = p, then an irreducible polynomial
f(z) is not separable if and only f(x) = g(z?) for some g(z).

One can go a little bit further. If K is finite field with charK = p.
Let f(z) =Y a;x* be an irreducible polynomial. f/(z) = 0 means that
pli for all a; # 0. Thus f(z) can be rewrite as Y a;z"?. Recall that each
a; can be written as b for some b; because K is finite. Thus f(x) =
S0z = (3] bix')P. This contradicts to f(x) being irreducible. To
sum up, an irreducible polynomial over a finite field is always separable.

Let’s now turn back to the discussion of Galois groups. If f(x) is
irreducible and separable of degree 2, then Gy = Sy = Zy. If f(z) is
irreducible and separable of degree 3, then G is a subgroup of S3 of
order divided by 3. Thus G could be Az or S5. The question now is
how to distinguish these two cases.

Lemma 3.7.4. (charK # 2) Let f(z) € K|z] be an irreducible and sep-
arable polynomial of degree 3 with splitting field F' and roots wuy, us, us.
Then (GfN Az) = K[A], where A := (u; — ug)(us — us)(ug — ug)

Note that f(z) is irreducible and separable, then F/K is Galois.
And A? is invariant under Gy. Thus D := A? € K. We call D the
discriminant of f(z).

If f(z) is written as 2® + bx? + cx + d, then s; 1= uy +ug +uz = —b,

So 1= Uilg + U U3 + Uz = ¢, S3 = Uiusuz = —d. We impose an
ordering u; > usy > u3 Then leading term of D is uju3, which is the
leading term of s?s3. Then we consider D’ := D — s?s2 with lower

leading term, which is —4u?u3. This leading term is the same as the
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leading term of —4s3. So we consider D) := D' + 4s3. Inductively,
one can write D in terms of sq, s9, s3, hence in terms of b, ¢, d.
If f(x) is normalized as z° + px + ¢, then D = —4p3 — 274¢°.

Proof. o(A) = A if and only ¢ is an even permutation. So A € (Gy N
A3)" clearly. Hence we have K[A] < (Gy N A3). Thus K[A] > (G¢ N
A3). If 0 € K[A], then 0(A) = A, hence o is even. Thus K[A] <
(GyN As). So we have K[A] = (GyNA;) and K[A] = (GyNAz). O

We thus conclude that Gy = Aj if and only if Dy is square in K.
And Gy = Ss if and only if Dy is not a square in K

Example 3.7.5.

Let f(z) =2® + 2+ 1 € Q[z]. It’s irreducible.

Now we consider the case of degree 4 polynomial. One can also define
A and discriminant D similarly. However, it turns out that this is not
enough to classify all cases. The idea is to consider another normal
subgroup V; <1 S;.

Let’s first list at all possible subgroup in S;. Since G is transitive
with order divided by 4. We can have following

Gyl Gy GynVy |Gyl/|Gy N Vi
24 Sy Vi 6

12 Ay Vi
8 =Dy Vi
4 =272y #FV
4 Vi Vi

— N DN W

Also we have the following

Lemma 3.7.6. Let f(x) be an irreducible separable polynomial of de-
gree 4 with splitting field F and roots uy, K,uy. Let o = ujug + uzuy
B = ujug + ugty, v = wyg + usug. Then Ko, B,7] = (GyNVy).

Let g(z) = (x — a)(x — B)(z — =), then one can check that o(g(z) =
g(z) for all 0 € Gy. Thus g(z) € Klx] for F//K is Galois. The cubic
g(z) is call the resolvant cubic of f(x). If f(x) = x*+bax*+cx?+dx+e,
then its resolvant cubic is g(z) = 2% — cx® + (bd — 4e)x — b?e + dce — d>
by computation on symmetric polynomials as we exhibited.

Proof. It clear that K[«, 3,7] < (GyNVy)'. Hence we have (GyNVy) <
Kla, B,7]'. Now if ¢ € Kla,3,7]) and ¢ 5 V4. We claim that this
would lead to a contradiction. And thus we are done.

The claim can be verified directly by exhausting all cases. For ex-
ample, if o = (1,3), then o(a) = « gives ugug + ujuy = uyug + usty.
Thus (ug — ug)(u; — uz) = 0 contradict to reparability of f(z). The
other cases can be computed similarly.

U
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Let m := |G¢|/|Gf N V4| = [K]e, 8,7] : K]. By using this correspon-

dence, one sees that:

1. m=14 Gy =V, & g(x) splits into linear factors in K|[z].

2. m=3& Gy =As & g(x) is irreducible in K[z] and D, is a square
in K.

3. m=6<« Gy =954 < g(x) is irreducible in K|z] and D, is not a
square in K.

The only remaining unclear case is m = 2. This case corresponding
to the case that g(z) splits into a linear and a quadratic factors in K[z].
To see the Galois group, we claim that Gy = Dy if and only if f(x) is
irreducible in Ko, 8, 7][z].

First of all, if f(x) is irreducible in K[a, 3,7][x], then

4= [K[o, B,7)lw] : Klo, ,9]] < [F: Kla, B,1]] = |Gy N Vil

So Gf = Dg.

On the other hand, F' is the splitting field of f(x) over K[a, 3,7] as
well. Suppose that f(x) is reducible. If f(z) factors into a linear and a
cubic factor in K|a, 3, 7], then the Galois group of f(z) over K|a, 3, 7],
which is GyNV}, can only = Ajg or Ss. This is a contradiction. Running
over all cases, one sees that the only possible case is f(x) factors into

two linear and one quadratic factors. Thus |Gy N Vy| = 2 and hence
Gy = Zy.

3.8. finite fields. The Galois theory on finite fields is comparatively
easy and basically governed by Frobenius map.

Recall that given a finite field F' of ¢ elements, it’s prime field must
be of the form F, for some prime p. Let n = [F' : F,], then |F| = p™.

Theorem 3.8.1. F s a finite field with p™ elements if and only if F
is a splitting field of z*" — x over TF,,.



