Dec. 1, 2006

Remark 3.6.8. Some of the result we proved still true in a more general setting. We list some here:

- (1) If F/K is an extension, and an intermediate field E is stable, then $E' \lhd \operatorname{Gal}_{F/K}$.
- (2) Let F/K be an extension. If $N \triangleleft \operatorname{Gal}_{F/K}$, then H' is stable.
- (3) If F/K is Galois, and E is a stable intermediate field, then E is Galois over K. (finite-dimensional assumption is unnecessary here)
- (4) An intermediate field E is algebraic and Galois over K, then E is stable.

We conclude this section with the following theorem concerning the relation between Galois extension, normal extension and splitting fields.

Definition 3.6.9. An irreducible polynomial $f(x) \in K[x]$ is said to be separable if its roots are all distinct in \overline{K} .

Let F be an extension over K and $u \in F$ is algebraic over K. Then u is separable over K if its minimal polynomial is separable.

An extession F over K is separable if every element of F is separable over K.

Theorem 3.6.10. Let F/K be an extension, then the following are equivalent

- (1) F is algebraic and Galois over K.
- (2) F is separable over K and F is a splitting field over K of a set S of polynomials.
- (3) F is a splitting field of separable polynomials in K[X].
- (4) F/K is normal and separable.

Proof. Fix $u \in F$ with minimal polynomial p(x) over K. Let $\{u = u_1, ..., u_r\}$ be distinct roots of p(x) in F. For any σ , then σ permutes $\{u = u_1, ..., u_r\}$. Thus $f(x) := \prod_{i=1}^r (x - u_i)$ is invariant under σ . Hence $f(x) \in K[x]$. It follows that f(x) = p(x). This proved that $(1) \Rightarrow (2), (3), (4)$.

One notices that $(2) \Leftrightarrow (4)$. Thus it remains to show that $(2) \Rightarrow (3)$, and $(3) \Rightarrow (1)$.

For $(2) \Rightarrow (3)$, let $f(x) \in S$ and let g(x) be an monic irreducible component of f(x). Since f(x) splits in F, it's clear that g(x) is an minimal polynomial of some element in F. Moreover, since F/K is separable, g(x) is separable. One sees that F is in fact a splitting field of such q(x)'s.

For $(3) \Rightarrow (1)$, we first note that F/K is algebraic since F is a splitting field. We shall prove that $(4) \Rightarrow (1)$. The implication $(3) \rightarrow (4)$ follows from a general fact about separable extension that an algebraic extension F/K is separable if F is generated by separable elements.

To this end, pick any $u \in F - K$, with minimal polynomial p(x) of degree ≥ 2 and separable. Hence there is a different root, say v, of p(x) in F. It's natural to consider the K-isomorphism $\sigma : K(u) \to K(v)$. Which can be extended to $\overline{\sigma} : F \to \overline{K}$. Since F is normal, $\overline{\sigma}$ is an automorphism of F, hence in $\operatorname{Gal}_{F/K}$ sending u to $v \neq u$. So F/K is Galois.

3.7. Galois group of a polynomial. In this section, we are going to study Galois group of a polynomial. We will define this notion in general and study polynomial of degree 3,4 in more detail.

Definition 3.7.1. Let $f \in K[x]$ be a polynomial with splitting field F. The Galois group of f(x), denoted G_f is the Galois group of F/K.

The Galois group of a polynomial have some basic properties.

Proposition 3.7.2. Let f(x) be a polynomial of degree n, then $G_f \hookrightarrow S_n$. Thus one can viewed G_f as a subgroup of S_n .

If f(x) is irreducible and separable, then G_f is transitive and $|G_f|$ is divided by n.

Sketch of the proof. Let $\{u_1, ..., u_r\}$ be roots of f(x) in F. For $\sigma \in G_f$, $\sigma(u_i) = u_j$. Hence σ gives a permutation of r elements. It follows that G_f can be viewed as a subgroup of S_r hence S_n .

(r could possibly less than n because there might have multiple roots in general).

Now if f(x) is separable. Then we have distinct roots $\{u_1, ..., u_n\}$ in F. For any u_i , we have $K[u_i] \cong K[x]/(f(x))$ since f(x) is irreducible. If follows that there is a K-isomorphism $\sigma : K[u_i] \to K[x]/(f(x)) \to K[u_j]$ for all i, j. sigma gives an K-embedding $K[u_i] \to \overline{K[u_j]} = \overline{K}$ and extended to a K-embedding $\overline{\sigma} : F \to \overline{K}$. Since F is normal, $\overline{\sigma}(F) = F$ (cf. Theorem ?). Thus $\overline{\sigma} \in G_f$ and $\overline{\sigma}(u_i) = \sigma(u_i) = u_j$. Therefore, G_f is transitive.

Moreover, since $K \subset K[u_i] \subset F$. So $|G_f| = [F : K] = [F : K[u_i]]n$ is divided by n.

So now, we discuss irreducible separable polynomials of small degree. One might wondering how do we know a polynomial is separable or not. We have the following easy criteria:

Proposition 3.7.3. Let $f(x) \in K[x]$ be an irreducible polynomial The following are equivalent:

- 1. f(x) is separable.
- 2. (f(x), f'(x)) = 1 in $\overline{K}[x]$
- 3. (f(x), f'(x)) = 1 in K[x]
- 4. $f'(x) \neq 0$

Recall that when $f(x) = \sum a_i x^i$, then f'(x) is its formal differentiation which is $f'(x) := \sum i a_i x^{i-1}$. *Proof.* If f(x) is separable, then $f(x) = \prod_{i=1}^{n} (x - u_i)$ with distinct u_i in $\overline{K}[x]$. Thus $f'(x) = \sum_{i=1}^{n} \frac{\prod_{i=1}^{n} (x - u_i)}{x - u_i}$. If $(f(x), f'(x)) \neq 1$ in $\overline{K}[x]$, then $x - u_i | f'(x)$ for some *i*. However, $f'(u_i) = \prod_{j \neq i} (u_j - u_i) \neq 0$, a contradiction.

Conversely, if f(x) is not separable, then $f(x) = \prod_{i=1}^{r} (x-u_i)^{a_i}$ with some $a_i \ge 2$. Let's say $a_1 \ge 2$. Then it's clear that $(x-u_1)$ is a factor of f'(x) as well. Hence $(f(x), f'(x)) \ne 1$. This proved the equivalence of (1) and (2).

To see the equivalence of (2) and (3). Note that if (f(x), f'(x)) = 1in K[x], then 1 = f(x)s(x) + f'(x)t(x) for some $s(x), t(x) \in K[x]$. One can view this in $\overline{K}[x]$ and thus conclude that (f(x), f'(x)) = 1in $\overline{K}[x]$. On the other hand, if $(f(x), f'(x)) = d(x) \neq 1$ in K[x], then d(x) = f(x)s(x) + f'(x)t(x) for some $s(x), t(x) \in K[x]$. One can view this in $\overline{K}[x]$ and thus conclude that d(x)|(f(x), f'(x)) in $\overline{K}[x]$. In particular, $(f(x), f'(x)) \neq 1$ in $\overline{K}[x]$

Now finally, since f(x) is irreducible, (f(x), f'(x)) could only be 1 or f(x). Since f(x)|f'(x) if and only f'(x) = 0. Thus we are done.

One notice that if $\operatorname{char} K \neq 0$, then an irreducible polynomial is always separable. When $\operatorname{char} K = p$, then an irreducible polynomial f(x) is not separable if and only $f(x) = g(x^p)$ for some g(x).

One can go a little bit further. If K is finite field with charK = p. Let $f(x) = \sum a_i x^i$ be an irreducible polynomial. f'(x) = 0 means that p|i for all $a_i \neq 0$. Thus f(x) can be rewrite as $\sum a_i x^{ip}$. Recall that each a_i can be written as b_i^p for some b_i because K is finite. Thus $f(x) = \sum b_i^p x^{ip} = (\sum b_i x^i)^p$. This contradicts to f(x) being irreducible. To sum up, an irreducible polynomial over a finite field is always separable.

Let's now turn back to the discussion of Galois groups. If f(x) is irreducible and separable of degree 2, then $G_f \cong S_2 \cong \mathbb{Z}_2$. If f(x) is irreducible and separable of degree 3, then G_f is a subgroup of S_3 of order divided by 3. Thus G_f could be A_3 or S_3 . The question now is how to distinguish these two cases.

Lemma 3.7.4. (char $K \neq 2$) Let $f(x) \in K[x]$ be an irreducible and separable polynomial of degree 3 with splitting field F and roots u_1, u_2, u_3 . Then $(G_f \cap A_3) = K[\Delta]$, where $\Delta := (u_1 - u_2)(u_1 - u_3)(u_2 - u_3)$

Note that f(x) is irreducible and separable, then F/K is Galois. And Δ^2 is invariant under G_f . Thus $D := \Delta^2 \in K$. We call D the discriminant of f(x).

If f(x) is written as $x^3 + bx^2 + cx + d$, then $s_1 := u_1 + u_2 + u_3 = -b$, $s_2 := u_1u_2 + u_1u_3 + u_2u_3 = c$, $s_3 := u_1u_2u_3 = -d$. We impose an ordering $u_1 > u_2 > u_3$. Then leading term of D is $u_1^4u_2^2$, which is the leading term of $s_1^2s_2^2$. Then we consider $D' := D - s_1^2s_2^2$ with lower leading term, which is $-4u_1^3u_2^3$. This leading term is the same as the leading term of $-4s_2^3$. So we consider $D^{(2)} := D' + 4s_2^3$. Inductively, one can write D in terms of s_1, s_2, s_3 , hence in terms of b, c, d.

If f(x) is normalized as $x^3 + px + q$, then $D = -4p^3 - 27q^2$.

Proof. $\sigma(\Delta) = \Delta$ if and only σ is an even permutation. So $\Delta \in (G_f \cap A_3)'$ clearly. Hence we have $K[\Delta] < (G_f \cap A_3)'$. Thus $K[\Delta]' > (G_f \cap A_3)$. If $\sigma \in K[\Delta]'$, then $\sigma(\Delta) = \Delta$, hence σ is even. Thus $K[\Delta]' < (G_f \cap A_3)$. So we have $K[\Delta]' = (G_f \cap A_3)$ and $K[\Delta] = (G_f \cap A_3)'$. \Box

We thus conclude that $G_f = A_3$ if and only if D_f is square in K. And $G_f = S_3$ if and only if D_f is not a square in K

Example 3.7.5.

Let $f(x) = x^3 + x + 1 \in \mathbb{Q}[x]$. It's irreducible.

Now we consider the case of degree 4 polynomial. One can also define Δ and discriminant D similarly. However, it turns out that this is not enough to classify all cases. The idea is to consider another normal subgroup $V_4 \triangleleft S_4$.

Let's first list at all possible subgroup in S_4 . Since G_f is transitive with order divided by 4. We can have following

$ G_f $	G_f	$G_f \cap V_4$	$ G_f / G_f \cap V_4 $
24	S_4	V_4	6
12	A_4	V_4	3
8	$\cong D_8$	V_4	2
4	$\cong \mathbb{Z}_4$	$\neq V_4$	2
4	V_4	V_4	1

Also we have the following

Lemma 3.7.6. Let f(x) be an irreducible separable polynomial of degree 4 with splitting field F and roots u_1, K, u_4 . Let $\alpha = u_1u_2 + u_3u_4$ $\beta = u_1u_3 + u_2u_4, \gamma = u_1u_4 + u_2u_3$. Then $K[\alpha, \beta, \gamma] = (G_f \cap V_4)$.

Let $g(x) = (x - \alpha)(x - \beta)(x - \gamma)$, then one can check that $\sigma(g(x) = g(x)$ for all $\sigma \in G_f$. Thus $g(x) \in K[x]$ for F/K is Galois. The cubic g(x) is call the **resolvant cubic** of f(x). If $f(x) = x^4 + bx^3 + cx^2 + dx + e$, then its resolvant cubic is $g(x) = x^3 - cx^2 + (bd - 4e)x - b^2e + 4ce - d^2$ by computation on symmetric polynomials as we exhibited.

Proof. It clear that $K[\alpha, \beta, \gamma] < (G_f \cap V_4)'$. Hence we have $(G_f \cap V_4) < K[\alpha, \beta, \gamma]'$. Now if $\sigma \in K[\alpha, \beta, \gamma]'$ and $\sigma \ni V_4$. We claim that this would lead to a contradiction. And thus we are done.

The claim can be verified directly by exhausting all cases. For example, if $\sigma = (1,3)$, then $\sigma(\alpha) = \alpha$ gives $u_3u_2 + u_1u_4 = u_1u_2 + u_3u_4$. Thus $(u_2 - u_4)(u_1 - u_3) = 0$ contradict to reparability of f(x). The other cases can be computed similarly. Let $m := |G_f|/|G_f \cap V_4| = [K[\alpha, \beta, \gamma] : K]$. By using this correspondence, one sees that:

1. $m = 1 \Leftrightarrow G_f = V_4 \Leftrightarrow g(x)$ splits into linear factors in K[x].

2. $m = 3 \Leftrightarrow G_f = A_4 \Leftrightarrow g(x)$ is irreducible in K[x] and D_g is a square in K.

3. $m = 6 \Leftrightarrow G_f = S_4 \Leftrightarrow g(x)$ is irreducible in K[x] and D_g is not a square in K.

The only remaining unclear case is m = 2. This case corresponding to the case that g(x) splits into a linear and a quadratic factors in K[x]. To see the Galois group, we claim that $G_f \cong D_8$ if and only if f(x) is irreducible in $K[\alpha, \beta, \gamma][x]$.

First of all, if f(x) is irreducible in $K[\alpha, \beta, \gamma][x]$, then

 $4 = [K[\alpha, \beta, \gamma][u_1] : K[\alpha, \beta, \gamma]] \le [F : K[\alpha, \beta, \gamma]] = |G_f \cap V_4|.$ So $G_f \cong D_8$.

On the other hand, F is the splitting field of f(x) over $K[\alpha, \beta, \gamma]$ as well. Suppose that f(x) is reducible. If f(x) factors into a linear and a cubic factor in $K[\alpha, \beta, \gamma]$, then the Galois group of f(x) over $K[\alpha, \beta, \gamma]$, which is $G_f \cap V_4$, can only $\cong A_3$ or S_3 . This is a contradiction. Running over all cases, one sees that the only possible case is f(x) factors into two linear and one quadratic factors. Thus $|G_f \cap V_4| = 2$ and hence $G_f \cong \mathbb{Z}_4$.

3.8. finite fields. The Galois theory on finite fields is comparatively easy and basically governed by Frobenius map.

Recall that given a finite field F of q elements, it's prime field must be of the form \mathbb{F}_p for some prime p. Let $n = [F : \mathbb{F}_p]$, then $|F| = p^n$.

Theorem 3.8.1. *F* is a finite field with p^n elements if and only if *F* is a splitting field of $x^{p^n} - x$ over \mathbb{F}_n .