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Dec. 1, 2006

Remark 3.6.8. Some of the result we proved still true in a more gen-
eral setting. We list some here:

(1) If F/K is an extension, and an intermediate field E is stable,
then E ′ C GalF/K.

(2) Let F/K be an extension. If N C GalF/K, then H ′ is stable.
(3) If F/K is Galois, and E is a stable intermediate field, then E is

Galois over K. (finite-dimensional assumption is unnecessary
here)

(4) An intermediate field E is algebraic and Galois over K, then E
is stable.

We conclude this section with the following theorem concerning the
relation between Galois extension, normal extension and splitting fields.

Definition 3.6.9. An irreducible polynomial f(x) ∈ K[x] is said to be
separable if its roots are all distinct in K.

Let F be an extension over K and u ∈ F is algebraic over K. Then
u is separable over K if its minimal polynomial is separable.

An extesnion F over K is separable if every element of F is separable
over K.

Theorem 3.6.10. Let F/K be an extension, then the following are
equivalent

(1) F is algebraic and Galois over K.
(2) F is separable over K and F is a splitting field over K of a set

S of polynomials.
(3) F is a splitting field of separable polynomials in K[X].
(4) F/K is normal and separable.

Proof. Fix u ∈ F with minimal polynomail p(x) over K. Let {u =
u1, ..., ur} be distinct roots of p(x) in F . For any σ, then σ permutes
{u = u1, ..., ur}. Thus f(x) :=

∏r
i=1(x − ui) is invariant under σ.

Hence f(x) ∈ K[x]. It follows that f(x) = p(x). This proved that
(1) ⇒ (2), (3), (4).

One notices that (2) ⇔ (4). Thus it remains to show that (2) ⇒ (3),
and (3) ⇒ (1).

For (2) ⇒ (3), let f(x) ∈ S and let g(x) be an monic irreducible
component of f(x). Since f(x) splits in F , it’s clear that g(x) is an
minimal polynomial of some element in F . Moreover, since F/K is
separable, g(x) is separable. One sees that F is in fact a splitting field
of such g(x)’s.

For (3) ⇒ (1), we first note that F/K is algebraic since F is a split-
ting field. We shall prove that (4) ⇒ (1). The implication (3) → (4)
follows from a general fact about separable extension that an algebraic
extension F/K is separable if F is generated by separable elements.
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To this end, pick any u ∈ F −K, with minimal polynomial p(x) of
degree ≥ 2 and separable. Hence there is a different root, say v, of p(x)
in F . It’s natural to consider the K-isomorphism σ : K(u) → K(v).
Which can be extended to σ̄ : F → K. Since F is normal, σ̄ is an
automorphism of F , hence in GalF/K sending u to v 6= u. So F/K is
Galois.

¤
3.7. Galois group of a polynomial. In this section, we are going
to study Galois group of a polynomial. We will define this notion in
general and study polynomial of degree 3,4 in more detail.

Definition 3.7.1. Let f ∈ K[x] be a polynomial with splitting field F .
The Galois group of f(x), denoted Gf is the Galois group of F/K.

The Galois group of a polynomial have some basic properties.

Proposition 3.7.2. Let f(x) be a polynomial of degree n, then Gf ↪→
Sn. Thus one can viewed Gf as a subgroup of Sn.

If f(x) is irreducible and separable, then Gf is transitive and |Gf | is
divided by n.

Sketch of the proof. Let {u1, ..., ur} be roots of f(x) in F . For σ ∈ Gf ,
σ(ui) = uj. Hence σ gives a permutation of r elements. It follows that
Gf can be viewed as a subgroup of Sr hence Sn.

(r could possibly less than n because there might have multiple roots
in general).

Now if f(x) is separable. Then we have distinct roots {u1, ..., un} in
F . For any ui, we have K[ui] ∼= K[x]/(f(x)) since f(x) is irreducible.
If follows that there is a K-isomorphism σ : K[ui] → K[x]/(f(x)) →
K[uj] for all i, j. sigma gives an K-embedding K[ui] → K[uj] = K and
extended to a K-embedding σ̄ : F → K. Since F is normal, σ̄(F ) = F
(cf. Theorem ?). Thus σ̄ ∈ Gf and σ̄(ui) = σ(ui) = uj. Therefore, Gf

is transitive.
Moreover, since K ⊂ K[ui] ⊂ F . So |Gf | = [F : K] = [F : K[ui]]n

is divided by n. ¤
So now, we discuss irreducible separable polynomials of small degree.

One might wondering how do we know a polynomial is separable or not.
We have the following easy criteria:

Proposition 3.7.3. Let f(x) ∈ K[x] be an irreducible polynomial The
following are equivalent:
1. f(x) is separable.
2. (f(x), f ′(x)) = 1 in K[x]
3. (f(x), f ′(x)) = 1 in K[x]
4. f ′(x) 6= 0

Recall that when f(x) =
∑

aix
i, then f ′(x) is its formal differentia-

tion which is f ′(x) :=
∑

iaix
i−1.
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Proof. If f(x) is separable, then f(x) =
∏n

i=1(x − ui) with distinct

ui in K[x]. Thus f ′(x) =
∑ ∏n

i=1(x−ui)

x−ui
. If (f(x), f ′(x)) 6= 1 in K[x],

then x − ui|f ′(x) for some i. However, f ′(ui) =
∏

j 6=i(uj − ui) 6= 0, a
contradiction.

Conversely, if f(x) is not separable, then f(x) =
∏r

i=1(x−ui)
ai with

some ai ≥ 2. Let’s say a1 ≥ 2. Then it’s clear that (x− u1) is a factor
of f ′(x) as well. Hence (f(x), f ′(x)) 6= 1. This proved the equivalence
of (1) and (2).

To see the equivalence of (2) and (3). Note that if (f(x), f ′(x)) = 1
in K[x], then 1 = f(x)s(x) + f ′(x)t(x) for some s(x), t(x) ∈ K[x].
One can view this in K[x] and thus conclude that (f(x), f ′(x)) = 1
in K[x]. On the other hand, if (f(x), f ′(x)) = d(x) 6= 1 in K[x],
then d(x) = f(x)s(x) + f ′(x)t(x) for some s(x), t(x) ∈ K[x]. One can
view this in K[x] and thus conclude that d(x)|(f(x), f ′(x)) in K[x]. In
particular, (f(x), f ′(x)) 6= 1 in K[x]

Now finally, since f(x) is irreducible, (f(x), f ′(x)) could only be 1 or
f(x). Since f(x)|f ′(x) if and only f ′(x) = 0. Thus we are done. ¤

One notice that if charK 6= 0, then an irreducible polynomial is
always separable. When charK = p, then an irreducible polynomial
f(x) is not separable if and only f(x) = g(xp) for some g(x).

One can go a little bit further. If K is finite field with charK = p.
Let f(x) =

∑
aix

i be an irreducible polynomial. f ′(x) = 0 means that
p|i for all ai 6= 0. Thus f(x) can be rewrite as

∑
aix

ip. Recall that each
ai can be written as bp

i for some bi because K is finite. Thus f(x) =∑
bp
i x

ip = (
∑

bix
i)p. This contradicts to f(x) being irreducible. To

sum up, an irreducible polynomial over a finite field is always separable.
Let’s now turn back to the discussion of Galois groups. If f(x) is

irreducible and separable of degree 2, then Gf
∼= S2

∼= Z2. If f(x) is
irreducible and separable of degree 3, then Gf is a subgroup of S3 of
order divided by 3. Thus Gf could be A3 or S3. The question now is
how to distinguish these two cases.

Lemma 3.7.4. (charK 6= 2) Let f(x) ∈ K[x] be an irreducible and sep-
arable polynomial of degree 3 with splitting field F and roots u1, u2, u3.
Then (Gf ∩ A3) = K[∆], where ∆ := (u1 − u2)(u1 − u3)(u2 − u3)

Note that f(x) is irreducible and separable, then F/K is Galois.
And ∆2 is invariant under Gf . Thus D := ∆2 ∈ K. We call D the
discriminant of f(x).

If f(x) is written as x3 + bx2 + cx + d, then s1 := u1 + u2 + u3 = −b,
s2 := u1u2 + u1u3 + u2u3 = c, s3 := u1u2u3 = −d. We impose an
ordering u1 > u2 > u3. Then leading term of D is u4

1u
2
2, which is the

leading term of s2
1s

2
2. Then we consider D′ := D − s2

1s
2
2 with lower

leading term, which is −4u3
1u

3
2. This leading term is the same as the
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leading term of −4s3
2. So we consider D(2) := D′ + 4s3

2. Inductively,
one can write D in terms of s1, s2, s3, hence in terms of b, c, d.

If f(x) is normalized as x3 + px + q, then D = −4p3 − 27q2.

Proof. σ(∆) = ∆ if and only σ is an even permutation. So ∆ ∈ (Gf ∩
A3)

′ clearly. Hence we have K[∆] < (Gf ∩ A3)
′. Thus K[∆]′ > (Gf ∩

A3). If σ ∈ K[∆]′, then σ(∆) = ∆, hence σ is even. Thus K[∆]′ <
(Gf ∩A3). So we have K[∆]′ = (Gf ∩A3) and K[∆] = (Gf ∩A3)

′. ¤

We thus conclude that Gf = A3 if and only if Df is square in K.
And Gf = S3 if and only if Df is not a square in K

Example 3.7.5.

Let f(x) = x3 + x + 1 ∈ Q[x]. It’s irreducible.
Now we consider the case of degree 4 polynomial. One can also define

∆ and discriminant D similarly. However, it turns out that this is not
enough to classify all cases. The idea is to consider another normal
subgroup V4 C S4.

Let’s first list at all possible subgroup in S4. Since Gf is transitive
with order divided by 4. We can have following

|Gf | Gf Gf ∩ V4 |Gf |/|Gf ∩ V4|
24 S4 V4 6
12 A4 V4 3
8 ∼= D8 V4 2
4 ∼= Z4 6= V4 2
4 V4 V4 1

Also we have the following

Lemma 3.7.6. Let f(x) be an irreducible separable polynomial of de-
gree 4 with splitting field F and roots u1, K, u4. Let α = u1u2 + u3u4

β = u1u3 + u2u4, γ = u1u4 + u2u3. Then K[α, β, γ] = (Gf ∩ V4).

Let g(x) = (x− α)(x− β)(x− γ), then one can check that σ(g(x) =
g(x) for all σ ∈ Gf . Thus g(x) ∈ K[x] for F/K is Galois. The cubic
g(x) is call the resolvant cubic of f(x). If f(x) = x4+bx3+cx2+dx+e,
then its resolvant cubic is g(x) = x3− cx2 + (bd− 4e)x− b2e + 4ce− d2

by computation on symmetric polynomials as we exhibited.

Proof. It clear that K[α, β, γ] < (Gf ∩V4)
′. Hence we have (Gf ∩V4) <

K[α, β, γ]′. Now if σ ∈ K[α, β, γ]′ and σ 3 V4. We claim that this
would lead to a contradiction. And thus we are done.

The claim can be verified directly by exhausting all cases. For ex-
ample, if σ = (1, 3), then σ(α) = α gives u3u2 + u1u4 = u1u2 + u3u4.
Thus (u2 − u4)(u1 − u3) = 0 contradict to reparability of f(x). The
other cases can be computed similarly.

¤
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Let m := |Gf |/|Gf ∩ V4| = [K[α, β, γ] : K]. By using this correspon-
dence, one sees that:
1. m = 1 ⇔ Gf = V4 ⇔ g(x) splits into linear factors in K[x].
2. m = 3 ⇔ Gf = A4 ⇔ g(x) is irreducible in K[x] and Dg is a square
in K.
3. m = 6 ⇔ Gf = S4 ⇔ g(x) is irreducible in K[x] and Dg is not a
square in K.

The only remaining unclear case is m = 2. This case corresponding
to the case that g(x) splits into a linear and a quadratic factors in K[x].
To see the Galois group, we claim that Gf

∼= D8 if and only if f(x) is
irreducible in K[α, β, γ][x].

First of all, if f(x) is irreducible in K[α, β, γ][x], then

4 = [K[α, β, γ][u1] : K[α, β, γ]] ≤ [F : K[α, β, γ]] = |Gf ∩ V4|.
So Gf

∼= D8.
On the other hand, F is the splitting field of f(x) over K[α, β, γ] as

well. Suppose that f(x) is reducible. If f(x) factors into a linear and a
cubic factor in K[α, β, γ], then the Galois group of f(x) over K[α, β, γ],
which is Gf∩V4, can only ∼= A3 or S3. This is a contradiction. Running
over all cases, one sees that the only possible case is f(x) factors into
two linear and one quadratic factors. Thus |Gf ∩ V4| = 2 and hence
Gf

∼= Z4.

3.8. finite fields. The Galois theory on finite fields is comparatively
easy and basically governed by Frobenius map.

Recall that given a finite field F of q elements, it’s prime field must
be of the form Fp for some prime p. Let n = [F : Fp], then |F | = pn.

Theorem 3.8.1. F is a finite field with pn elements if and only if F
is a splitting field of xpn − x over Fn.


