Remark 3.6.8. Some of the result we proved still true in a more general setting. We list some here:

1. If F/K is an extension, and an intermediate field E is stable, then $E' \triangleleft \text{Gal}_{F/K}$.
2. Let F/K be an extension. If $N \triangleleft \text{Gal}_{F/K}$, then H' is stable.
3. If F/K is Galois, and E is a stable intermediate field, then E is Galois over K. (finite-dimensional assumption is unnecessary here)
4. An intermediate field E is algebraic and Galois over K, then E is stable.

We conclude this section with the following theorem concerning the relation between Galois extension, normal extension and splitting fields.

Definition 3.6.9. An irreducible polynomial $f(x) \in K[x]$ is said to be separable if its roots are all distinct in K.

Let F be an extension over K and $u \in F$ is algebraic over K. Then u is separable over K if its minimal polynomial is separable.

An extension F over K is separable if every element of F is separable over K.

Theorem 3.6.10. Let F/K be an extension, then the following are equivalent

1. F is algebraic and Galois over K.
2. F is separable over K and F is a splitting field over K of a set S of polynomials.
3. F is a splitting field of separable polynomials in $K[X]$.
4. F/K is normal and separable.

Proof. Fix $u \in F$ with minimal polynomial $p(x)$ over K. Let $\{u = u_1, ..., u_r\}$ be distinct roots of $p(x)$ in F. For any σ, then σ permutes $\{u = u_1, ..., u_r\}$. Thus $f(x) := \prod_{i=1}^{r}(x - u_i)$ is invariant under σ. Hence $f(x) \in K[x]$. It follows that $f(x) = p(x)$. This proved that (1) \Rightarrow (2), (3), (4).

One notices that (2) \iff (4). Thus it remains to show that (2) \Rightarrow (3), and (3) \Rightarrow (1).

For (2) \Rightarrow (3), let $f(x) \in S$ and let $g(x)$ be an monic irreducible component of $f(x)$. Since $f(x)$ splits in F, it’s clear that $g(x)$ is a minimal polynomial of some element in F. Moreover, since F/K is separable, $g(x)$ is separable. One sees that F is in fact a splitting field of such $g(x)$’s.

For (3) \Rightarrow (1), we first note that F/K is algebraic since F is a splitting field. We shall prove that (4) \Rightarrow (1). The implication (3) \rightarrow (4) follows from a general fact about separable extension that an algebraic extension F/K is separable if F is generated by separable elements.
To this end, pick any $u \in F - K$, with minimal polynomial $p(x)$ of degree ≥ 2 and separable. Hence there is a different root, say v, of $p(x)$ in F. It’s natural to consider the K-isomorphism $\sigma : K(u) \to K(v)$. Which can be extended to $\bar{\sigma} : F \to \bar{K}$. Since F is normal, $\bar{\sigma}$ is an automorphism of F, hence in $\text{Gal}_{F/K}$ sending u to $v \neq u$. So F/K is Galois.

\[\square\]

3.7. Galois group of a polynomial. In this section, we are going to study Galois group of a polynomial. We will define this notion in general and study polynomial of degree 3,4 in more detail.

Definition 3.7.1. Let $f \in K[x]$ be a polynomial with splitting field F. The Galois group of $f(x)$, denoted G_f is the Galois group of F/K.

The Galois group of a polynomial have some basic properties.

Proposition 3.7.2. Let $f(x)$ be a polynomial of degree n, then $G_f \hookrightarrow S_n$. Thus one can viewed G_f as a subgroup of S_n.

If $f(x)$ is irreducible and separable, then G_f is transitive and $|G_f|$ is divided by n.

Sketch of the proof. Let $\{u_1, ..., u_r\}$ be roots of $f(x)$ in F. For $\sigma \in G_f$, $\sigma(u_i) = u_j$. Hence σ gives a permutation of r elements. It follows that G_f can be viewed as a subgroup of S_r hence S_n.

(r could possibly less than n because there might have multiple roots in general).

Now if $f(x)$ is separable. Then we have distinct roots $\{u_1, ..., u_n\}$ in F. For any u_i, we have $K[u_i] \cong K[x]/(f(x))$ since $f(x)$ is irreducible. If follows that there is a K-isomorphism $\sigma : K[u_i] \to K[x]/(f(x)) \to K[u_j]$ for all i,j. σ gives an K-embedding $K[u_i] \to K[u_j] = \bar{K}$ and extended to a K-embedding $\bar{\sigma} : F \to \bar{K}$. Since F is normal, $\bar{\sigma}(F) = F$ (cf. Theorem ?). Thus $\bar{\sigma} \in G_f$ and $\bar{\sigma}(u_i) = \sigma(u_i) = u_j$. Therefore, G_f is transitive.

Moreover, since $K \subset K[u_i] \subset F$. So $|G_f| = [F : K] = [F : K[u_i]]n$ is divided by n.

So now, we discuss irreducible separable polynomials of small degree. One might wondering how do we know a polynomial is separable or not. We have the following easy criteria:

Proposition 3.7.3. Let $f(x) \in K[x]$ be an irreducible polynomial. The following are equivalent:

1. $f(x)$ is separable.
2. $(f(x), f'(x)) = 1$ in $\bar{K}[x]$
3. $(f(x), f'(x)) = 1$ in $K[x]$
4. $f'(x) \neq 0$

Recall that when $f(x) = \sum a_i x^i$, then $f'(x)$ is its formal differentiation which is $f'(x) := \sum i a_i x^{i-1}$.

To this end, pick any $u \in F - K$, with minimal polynomial $p(x)$ of degree ≥ 2 and separable. Hence there is a different root, say v, of $p(x)$ in F. It’s natural to consider the K-isomorphism $\sigma : K(u) \to K(v)$. Which can be extended to $\bar{\sigma} : F \to \bar{K}$. Since F is normal, $\bar{\sigma}$ is an automorphism of F, hence in $\text{Gal}_{F/K}$ sending u to $v \neq u$. So F/K is Galois.
Proof. If $f(x)$ is separable, then $f(x) = \prod_{i=1}^{n}(x - u_i)$ with distinct u_i in $\overline{K}[x]$. Thus $f'(x) = \sum \prod_{i \neq j}^{n}(x - u_j)$ if $f(x), f'(x) \neq 1$ in $\overline{K}[x]$, then $x - u_i | f'(x)$ for some i. However, $f'(u_i) = \prod_{j \neq i}(u_j - u_i) \neq 0$, a contradiction.

Conversely, if $f(x)$ is not separable, then $f(x) = \prod_{i=1}^{r}(x - u_i)^{a_i}$ with some $a_i \geq 2$. Let’s say $a_1 \geq 2$. Then it’s clear that $(x - u_1)$ is a factor of $f'(x)$ as well. Hence $(f(x), f'(x)) \neq 1$. This proved the equivalence of (1) and (2).

To see the equivalence of (2) and (3). Note that if $(f(x), f'(x)) = 1$ in $\overline{K}[x]$, then $1 = f(x)s(x) + f'(x)t(x)$ for some $s(x), t(x) \in K[x]$. One can view this in $\overline{K}[x]$ and thus conclude that $(f(x), f'(x)) = 1$ in $\overline{K}[x]$. On the other hand, if $(f(x), f'(x)) = d(x) \neq 1$ in $\overline{K}[x]$, then $d(x) = f(x)s(x) + f'(x)t(x)$ for some $s(x), t(x) \in K[x]$. One can view this in $\overline{K}[x]$ and thus conclude that $d(x)|(f(x), f'(x))$ in $\overline{K}[x]$. In particular, $(f(x), f'(x)) \neq 1$ in $\overline{K}[x]$.

Now finally, since $f(x)$ is irreducible, $(f(x), f'(x))$ could only be 1 or $f(x)$. Since $f(x)|f'(x)$ if and only $f'(x) = 0$. Thus we are done. \qed

One notice that if char $K \neq 0$, then an irreducible polynomial is always separable. When char $K = p$, then an irreducible polynomial $f(x)$ is not separable if and only $f(x) = g(x^p)$ for some $g(x)$.

One can go a little bit further. If K is finite field with char $K = p$. Let $f(x) = \sum a_{i}x^{i}$ be an irreducible polynomial. $f'(x) = 0$ means that $p|i$ for all $a_i \neq 0$. Thus $f(x)$ can be rewrite as $\sum a_{i}x^{ip}$. Recall that each a_i can be written as b_i^p for some b_i because K is finite. Thus $f(x) = \sum b_{i}^{p}x^{ip} = (\sum b_{i}x^{i})^{p}$. This contradicts to $f(x)$ being irreducible. To sum up, an irreducible polynomial over a finite field is always separable.

Let’s now turn back to the discussion of Galois groups. If $f(x)$ is irreducible and separable of degree 2, then $G_{f} \cong S_{2} \cong \mathbb{Z}_{2}$. If $f(x)$ is irreducible and separable of degree 3, then G_{f} is a subgroup of S_{3} of order divided by 3. Thus G_{f} could be A_{3} or S_{3}. The question now is how to distinguish these two cases.

Lemma 3.7.4. (char $K \neq 2$) Let $f(x) \in K[x]$ be an irreducible and separable polynomial of degree 3 with splitting field F and roots u_{1}, u_{2}, u_{3}. Then $(G_{f} \cap A_{3}) = K[\Delta]$, where $\Delta := (u_{1} - u_{2})(u_{1} - u_{3})(u_{2} - u_{3})$.

Note that $f(x)$ is irreducible and separable, then F/K is Galois. And Δ^{2} is invariant under G_{f}. Thus $D := \Delta^{2} \in K$. We call D the discriminant of $f(x)$.

If $f(x)$ is written as $x^{3} + bx^{2} + cx + d$, then $s_{1} := u_{1} + u_{2} + u_{3} = -b$, $s_{2} := u_{1}u_{2} + u_{1}u_{3} + u_{2}u_{3} = c$, $s_{3} := u_{1}u_{2}u_{3} = -d$. We impose an ordering $u_{1} > u_{2} > u_{3}$. Then leading term of D is $u_{1}^{4}u_{2}^{2}$, which is the leading term of $s_{1}^{2}s_{2}$. Then we consider $D' := D - s_{1}^{2}s_{2}$ with lower leading term, which is $-4u_{1}^{3}u_{2}^{2}$. This leading term is the same as the
Lemma 3.7.6. Let $\sigma(\Delta) = \Delta$ if and only σ is an even permutation. So $\Delta \in (G_f \cap A_3)'$ clearly. Hence we have $K[\Delta] < (G_f \cap A_3)'$. Thus $K[\Delta]' > (G_f \cap A_3)$. If $\sigma \in K[\Delta]'$, then $\sigma(\Delta) = \Delta$, hence σ is even. Thus $K[\Delta]' < (G_f \cap A_3)$. So we have $K[\Delta]' = (G_f \cap A_3)$ and $K[\Delta] = (G_f \cap A_3)'$. ∎

We thus conclude that $G_f = A_3$ if and only if D_f is square in K. And $G_f = S_3$ if and only if D_f is not a square in K.

Example 3.7.5.

Let $f(x) = x^3 + x + 1 \in \mathbb{Q}[x]$. It’s irreducible.

Now we consider the case of degree 4 polynomial. One can also define Δ and discriminant D similarly. However, it turns out that this is not enough to classify all cases. The idea is to consider another normal subgroup $V_4 < S_4$.

Let’s first list at all possible subgroup in S_4. Since G_f is transitive with order divided by 4. We can have following

| $|G_f| \quad G_f \quad G_f \cap V_4 \quad |G_f|/|G_f \cap V_4|$ |
|---|---|---|---|
| 24 | S_4 | V_4 | 6 |
| 12 | A_4 | V_4 | 3 |
| 8 | $\cong D_8$ | V_4 | 2 |
| 4 | $\cong Z_4$ | $\neq V_4$ | 2 |
| 4 | V_4 | V_4 | 1 |

Also we have the following:

Lemma 3.7.6. Let $f(x)$ be an irreducible separable polynomial of degree 4 with splitting field F and roots u_1, K, u_4. Let $\alpha = u_1u_2 + u_3u_4$, $\beta = u_1u_3 + u_2u_4$, $\gamma = u_1u_4 + u_2u_3$. Then $K[\alpha, \beta, \gamma] = (G_f \cap V_4)$.

Let $g(x) = (x - \alpha)(x - \beta)(x - \gamma)$, then one can check that $\sigma(g(x)) = g(x)$ for all $\sigma \in G_f$. Thus $g(x) \in K[x]$ for F/K is Galois. The cubic $g(x)$ is call the **resolvent cubic** of $f(x)$. If $f(x) = x^4 + bx^3 + cx^2 + dx + e$, then its resolvent cubic is $g(x) = x^3 - cx^2 + (bd - 4e)x - b^2e + 4ce - d^2$ by computation on symmetric polynomials as we exhibited.

Proof. It clear that $K[\alpha, \beta, \gamma] < (G_f \cap V_4)'$. Hence we have $(G_f \cap V_4) < K[\alpha, \beta, \gamma]'$. Now if $\sigma \in K[\alpha, \beta, \gamma]'$ and $\sigma \ni V_4$. We claim that this would lead to a contradiction. And thus we are done.

The claim can be verified directly by exhausting all cases. For example, if $\sigma = (1, 3)$, then $\sigma(\alpha) = \alpha$ gives $u_3u_2 + u_1u_4 = u_1u_2 + u_3u_4$. Thus $(u_2 - u_4)(u_1 - u_3) = 0$ contradict to re reparability of $f(x)$. The other cases can be computed similarly. ∎
Let \(m := |G_f|/|G_f \cap V_4| = [K[\alpha, \beta, \gamma] : K] \). By using this correspondence, one sees that:

1. \(m = 1 \iff G_f = V_4 \iff g(x) \) splits into linear factors in \(K[x] \).
2. \(m = 3 \iff G_f = A_4 \iff g(x) \) is irreducible in \(K[x] \) and \(D_g \) is a square in \(K \).
3. \(m = 6 \iff G_f = S_4 \iff g(x) \) is irreducible in \(K[x] \) and \(D_g \) is not a square in \(K \).

The only remaining unclear case is \(m = 2 \). This case corresponding to the case that \(g(x) \) splits into a linear and a quadratic factors in \(K[x] \).

To see the Galois group, we claim that \(G_f \cong D_8 \) if and only if \(f(x) \) is irreducible in \(K[\alpha, \beta, \gamma][x] \).

First of all, if \(f(x) \) is irreducible in \(K[\alpha, \beta, \gamma][x] \), then

\[
4 = [K[\alpha, \beta, \gamma][u_1] : K[\alpha, \beta, \gamma]] \leq [F : K[\alpha, \beta, \gamma]] = |G_f \cap V_4|.
\]

So \(G_f \cong D_8 \).

On the other hand, \(F \) is the splitting field of \(f(x) \) over \(K[\alpha, \beta, \gamma] \) as well. Suppose that \(f(x) \) is reducible. If \(f(x) \) factors into a linear and a cubic factor in \(K[\alpha, \beta, \gamma] \), then the Galois group of \(f(x) \) over \(K[\alpha, \beta, \gamma] \), which is \(G_f \cap V_4 \), can only \(\cong A_3 \) or \(S_3 \). This is a contradiction. Running over all cases, one sees that the only possible case is \(f(x) \) factors into two linear and one quadratic factors. Thus \(|G_f \cap V_4| = 2 \) and hence \(G_f \cong \mathbb{Z}_4 \).

3.8. finite fields. The Galois theory on finite fields is comparatively easy and basically governed by Frobenius map.

Recall that given a finite field \(F \) of \(q \) elements, it’s prime field must be of the form \(\mathbb{F}_p \) for some prime \(p \). Let \(n = [F : \mathbb{F}_p] \), then \(|F| = p^n \).

Theorem 3.8.1. \(F \) is a finite field with \(p^n \) elements if and only if \(F \) is a splitting field of \(x^{p^n} - x \) over \(\mathbb{F}_n \).