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1. Set Theory

We recall some set theory that will be frequently used in the sequel
or that is not covered in the basic college course. However, we will keep
this chapter as minimum as possible.

We assume the notion of ”set” and some basic operation of sets
without bothering their definition.

1.1. Zorn’s Lemma.

Definition 1.1.1. A set S is said to be partially ordered if there is
a relation ≤ such that

(1) (reflexive) x ≤ x
(2) (anti-symmetric) if x ≤ y and y ≤ x, then x = y.
(3) (transitive) if x ≤ y and y ≤ z then x ≤ z.

We usually call a partially ordered set to be a POSET.

Definition 1.1.2. A pair of elements in an POSET is said to be com-
parable if either x ≤ y or y ≤ x. A set is said to be totally ordered
(or linearly ordered) if every pair is comparable.

We also need the following definition:

Definition 1.1.3. A maximal element of an poset S is an element
m ∈ S such that if m ≤ x then m = x.

Foe a given subset T ⊂ S, an upper bound of T is an element b ∈ S
such that x ≤ b for all x ∈ T .

One has the following

Theorem 1.1.4 (Zorn’s lemma). Let S be a non-empty poset. If every
non-empty totally ordered subset (usually called a ”chain”) has an up-
per bound, then there exists a maximal element in S.

Zorn’s Lemma could be taken as an axiom of set theory. It can be
proved to be equivalent with the Axiom of Choice. It’s also equivalent
to the Well-ordering Principle. We simply give the statement of these.
The reader can find the proof in most of the books on set theory.

An ordered set is said to be well-ordered if it is totally ordered and
every non-empty subset B has a least element, i.e. an element a ∈ B
such that a ≤ x for all x ∈ B.

Theorem 1.1.5 (Well-ordered Principle). Every non-empty set can be
well-ordered.
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One might wondering that (Q,≤) equipped with the usual ordering is
not well-ordered. So the statement says that there is another ordering
which make the set Q well-ordered.

Example 1.1.6. Let R be a non-zero commutative ring. One can
prove that there exists a maximal ideal by using Zorn’s lemma. The
proof goes as following: Let S = {I C R|I 6= R} equipped with the ⊂
as the partial ordering. S 6= ∅ because 0 ∈ S. For a chain {Ij}j∈J ,
one has a upper bound I = ∪Ij. Then we have a maximal element
in S by Zorn’s lemma. One can easily show that the maximal element
corresponds to a maximal ideal.

1.2. cardinality. In order to compare the ”size of sets”, we introduce
the cardinality.

Definition 1.2.1. Two sets A, B are said to have the same cardinality
if there is a bijection between them, denoted |A| = |B|.
And we say |A| ≤ |B| if there is a injection from A to B.

It’s easy to see that the cardinality has the properties that |A| ≤ |A|
and if |A| ≤ |B|, |B| ≤ |C|, then |A| ≤ |C|. So It’s likely that the
”cardinality are partially ordered” or even totally ordered.

Lemma 1.2.2. Given two set A, B, either |A| ≤ |B| or |B| ≤ |A|.
Sketch. Consider

S = {(C, f)|C ⊂ A, f : C → B is an injection}.
Apply Zorn’s lemma to S, one has an maximal element (D, g), then
one claim that either D = A or im(g) = B.
We leave it as an exercise for the readers. ¤
Theorem 1.2.3 (Schroeder-Bernstein). If |A| ≤ |B| and |B| ≤ |A|,
then |A| = |B|.
Sketch. Let f : A → B (resp. g : B → A) be the given injections
respectively. One needs to construct a bijection by using f and g.

Some parts of A use f and some parts not. So we consider the
partition

A1 := {a ∈ A|a has parentless ancestor in A},
A2 := {a ∈ A|a has parentless ancestor in B},

A3 := {a ∈ A|a has infinite ancestor}.
And so does B.

Then we claim that f restricted to A1, A3 are bijections to B1, B3.
And g restricted to B2, B3 are bijections to A2, A3. So the desired
bijection can be constructed. ¤

We need some more properties of cardinality. If |A| = |{1, .., n}|,
then we write |A| = n. And if |A| = |N| then we write |A| = ℵ0.



3

Proposition 1.2.4. If A is infinite, then ℵ0 ≤ |A|.
Sketch. By Axiom of Choice. ¤
Definition 1.2.5.

|A|+ |B| := |AqB|,
|A| · |B| := |A×B|.

We have the following properties:

Proposition 1.2.6.

(1) If |A| is infinite and |B| is finite, then |A + B| = |A|.
(2) If |B| ≤ |A| and |A| is infinite, then |A + B| = |A|.
(3) If |B| ≤ |A| and |A| is infinite, then |A×B| = |A|.

Proof. For (1), take a countable subset A0 in A by Proposition 1.2.4.
One sees that |A0| = |A0|+ |B| by shifting the index by |B|. Then we
have

|A| = |A− A0|+ |A0| = |A− A0|+ |A0|+ |B| = |A|+ |B|.
For (2), it’s enough to see that |A + A| ≤ |A| since clearly

|A| ≤ |A + B| ≤ |A + A|.
Pick an maximal subset X ⊂ A having the property that |X+X| ≤ |X|
by Zorn’s Lemma. One claim that A − X is finite, and then we are
done by (1).

To see the claim, if A−X is infinite, then there is a countable subset
A0 ⊂ A−X. One can construct an injective function AqXqAqX →
AqX which contradicts to the maximality of X.

For (3), it suffices to show that |A×A| = |A|. We sketch the proof.
Let

S = {(B, f)|B is an infinite subset of A, f : B → B×B an bijection}.
S is non-empty because S contains an infinite countable subset. S can
be equipped with natural partial ordering and by Zorn’s Lemma, there
exists a maximal element, say (M, g).

Let C be the complement of M in A. If |C| ≤ |M |, then by (2),
|A| = |M |. Hence there is a bijection h : A → M . It follows that there

is a bijection A
h→ M

G→ M ×M
(h−1,h−1)−→ A× A.

Finally, if |C| ≥ |M |, then there is a subset M1 ∈ C such that
|M1| = |M |. Let M ′ = M ∪M1. One can construct a bijection from
M ′ → M ′ ×M ′. This contradicts to the maximality of M . Hence we
are done. ¤


