Advanced Algebra I Homework 9 due on Dec. 8, 2006

- (1) Complete the uncompleted proof in the lecture.
- (2) Let $k[u_1, ..., u_n]$ be a polynomial ring with n indeterminates. Let $s_i := \sum_{j_1 < j_2 < K < j_i} u_{j_1} u_{j_2} ... u_{j_i}$ be the elementary symmetric polynomials. Show that $f \in k[u_1, ..., u_n]$ is symmetric if and only if $f \in k[s_1, ..., s_n]$.

In fact, one can consider the group action S_n on $k[u_1, ..., u_n]$. Let $k[u_1, ..., u_n]^{S_n}$ be the **invariant**, i.e. $\{f|\sigma(f) = f, \forall \sigma \in S_n\}$. The above assertion can be rephrased as $k[u_1, ..., u_n]^{S_n} = k[s_1, ..., s_n]$.

One can show that $k(u_1, ..., u_n)^{S_n} = k(s_1, ..., s_n).$

- (3) Keep the notation as above. Determine the Galois group of $k(u_1, ..., u_n)$ over $k(s_1, ..., s_n)$.
- (4) Show that for any given finite group G. There exists a Galois extension F/K with Galois group G.
 (Remark: It would be a very difficult problem (Inverse Galois Problem) if the base field is fixed, e.g Q.)
- (5) Determine the Galois group of $x^3 + x + 1$ over \mathbb{Q} and over \mathbb{F}_5 respectively.
- (6) Determine the Galois group of $x^4 + x + 1$ over \mathbb{Q} and over \mathbb{F}_7 respectively.
- (7) Determine the Galois group of $x^7 3$ over \mathbb{Q} .
- (8) If $f(x) = x^4 + bx^3 + cx^2 + dx + e$, then its resolvant cubic is $g(x) = x^3 cx^2 + (bd 4e)x b^2e + 4ce d^2$.