Advanced Algebra I Homework 6 due on Nov. 10, 2006

- (1) * Complete the uncompleted proof in the lecture.
- (2) Construct a field F of 9 elements. Then F^* is a cyclic group of 8 elements. Find a generator of F^* . * How about fields of 3^n elements?
- (3) Let $F = \mathbb{Q}(\sqrt{3}, i, \omega)$, where $\omega = \frac{-1+\sqrt{3}i}{2}$. Find $[F : \mathbb{Q}]$ and a basis of F over \mathbb{Q} .
- (4) Let $F = \mathbb{Q}(\sqrt[3]{2}, \omega)$. Find $[F : \mathbb{Q}]$ and a basis of F over \mathbb{Q} . Moreover, find an element u such that $F = \mathbb{Q}(u)$.
- (5) Verify Proposition 3.27.
- (6) In the field K(x) we consider $u = \frac{x^4 + x^2 + 1}{x+1}$ What is [K(x) : K(u)]? In general, if $u = \frac{f(x)}{g(x)}$, then what is [K(x) : K(u)]? (7) Let $\Phi_p(x) := \frac{x^p 1}{x-1} = x^{p-1} + \dots + 1 \in \mathbb{Q}[x]$. Show that $\Phi_p(x)$ is
- irreducible.