Advanced Algebra I Homework 15 due on Jan. 19, 2007

- (1) Complete the proof of Theorem 4.5.6 and 4.5.7
- (2) Let $F : \mathcal{A} \to \mathcal{B}$ be a left exact functor and \mathcal{A} has enough injectives. Show that $R^i F(A) := H^i(F(I^{\bullet}))$ is well-defined. That is, independent of choice of injective resolution I^{\bullet} .
- (3) Given a complex K^{\bullet} , construct an injective resolution I^{\bullet} of K^{\bullet} . That is, a quasi-isomorphism $f: K^{\bullet} \to I^{\bullet}$.
- (4) In the category of abelian groups, show that an injective object is a divisible group.
- (5) We can define projective in a similar way (with arrow reversing). That is for any exact sequence $B \xrightarrow{\alpha} C \to 0$ and $f: P \to C$, there exist $g: P \to B$ such that $g\alpha = f$.

Show that for any exact sequence $0 \to A \to B \to P \to 0$ with P being projective, the sequence splits.

We now consider the category of abelian groups Ab. Determine the projective objects. (Hint: every abelian group is a quotient of free abelian group.)