Advanced Algebra I Homework 14 due on Jan. 12, 2007

- (1) Complete the uncompleted proof in the lecture. Especially, the proof of Snake Lemma and Five Lemma.
- (2) Let \mathcal{C} be a category and let $A, B \in \mathcal{C}$. By a **product** of A, B we mean a triple (P, f, g) that consists of $P \in \mathcal{C}$ and $f : P \to A, g : P \to B$ such that for all (C, α, β) with $\alpha : C \to A, \beta : C \to B$, there exists a unique morphism $h : C \to P$ such that $fh = \alpha, gh = \beta$.
 - (a) Formulate a category so that (P, f, g) corresponds to a universal object in that category.
 - (b) Let $Z \in \mathcal{C}$. Then we can have a new category \mathcal{C}_Z , whose objects are (X, f) with $f : X \to Z$ in \mathcal{C} . And morphisms in $\operatorname{Hom}_{\mathcal{C}_Z}((X, f), (Y, g))$ are morphism $h : X \to Y$ such that gh = f. Describe the product of (X, f), (Y, g). (This is called the **fibered product of** X, Y over Z.)
 - (c) By a coproduct of A, B we mean a triple (C, f, g) consists of $C \in \mathcal{C}$ and $f : A \to C, g : B \to C$ such that for all (D, α, β) with $\alpha : A \to D, \beta : B \to D$, there exists a unique morphism $h: C \to D$ such that $hf = \alpha, hg = \beta$.
 - (d) Define and describe the fiber coproduct.
 - (e) Show that the product and coproduct exist in the category of sets.
 - (f) Show that fibered product and fibered coproduct exist in the category of abelian groups.
- (3) Let \mathcal{A} be an abelian category. Show that $Kom(\mathcal{A})$ is again an abelian category.
- (4) Here is the 3×3 Lemma. Given following commutative diagram in an abelian category such that each column is exact:

(a) If the bottom two rows are exact, so is the top row.

1

- (b) If the top two rows are exact, so is the bottom row.
- (c) If the top and bottom rows are exact and the composition $A \to C$ is zero, then the middle row is exact.
- (5) Given a complex K^{\bullet} . For a fixed n, we would like to have a new complex L^{\bullet} such that

$$L^{i} = \begin{cases} 0 & \text{if } i < n \\ K^{i} & \text{if } i > n. \end{cases}$$

And moreover $H^i(L^{\bullet}) = H^i(K^{\bullet})$ for $i \ge n$ and $H^i(L^{\bullet}) = 0$ for i < n. How to define L^n ?

If similarly we would like to have a complex M^{\bullet} such that $H^{i}(M^{\bullet}) = 0$ for all i > n and $H^{i}(M^{\bullet}) = H^{i}(K^{\bullet})$ for $i \leq n$. What can you do?