Advanced Algebra I Homework 13 due on Jan. 5, 2007

- (1) Complete the uncompleted proof in the lecture. Especially $tr.deg._{K}F = tr.deg._{K}E + tr.deg._{E}F.$
- (2) Determine the transcendental degree of F/K for the following F:
 - (a) F is the quotient field of $K[x, y]/(y^2 x^3 x)$.
- (a) F is the quotient field of $K[x, y, z, w]/(xz y^2, xw yz)$ (b) F is the quotient field of $K[x, y, z, w]/(xz y^2, xw yz)$ (3) Compute the homology groups of torus $T^2 = S^1 \times S^1$, S^n , and Klein bottle.
- (4) Compute the homology groups of \mathbb{R}^2 and $\mathbb{R}^2 \{0\}$.
- (5) Consider the subring $K[t^n, t^m] \subset K[t]$ with (m, n) = 1 and let F be its quotient field. Show that F = K(t).
- (6) Prove that \mathbb{C} have infinitely many automorphisms.
- (7) Suppose that we have extension $K \subset E \subset F$. If F/K is finitely generated, then so is E/K.