Advanced Algebra I Homework 12 due on Dec. 29, 2006

- (1) Complete the uncompleted proof in the lecture. Especially, the properties of purely inseparable extension.
- (2) Consider the extension $F := \mathbb{Q}[\sqrt{2}, \sqrt{3}]/\mathbb{Q}$. Find an element $u \in F$ such that $F = \mathbb{Q}[u]$ and verify your answer.
- (3) Construct an example of algebraic extension F/K such that F is not separable over P.
- (4) Show that the separable extension has the following properties:
 - (a) Let $K \subset E \subset F$. Then F/K is separable if and only if F/E and E/K are separable.
 - (b) If E/K is separable then FE/F is separable for an extension F/K.
 - (c) If $E, F \subset L$ are separable extension over K. Then EF is separable over K.

How about purely inseparable extension?

- (5) Let charK = p. If $a \in K K^p$, then $x^{p^n} a$ is irreducible for every $n \ge 1$.
- (6) Consider K(x)/K the field of one indeterminate over K. Show that an intermediate subfield is of the form K(t) for some $t \in K(x)$.
- (7) Consider the extension K(x, y)/K.
 - (a) Verify that there is a group action $PGL(3, K) \times K(x, y) \rightarrow K(x, y)$ by $g(x, y) := \left(\frac{a_{11}x + a_{12}y + a_{13}}{a_{31}x + a_{32}y + a_{33}}, \frac{a_{21}x + a_{22}y + a_{23}}{a_{31}x + a_{32}y + a_{33}}\right)$ if $g = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$. Hence it induces a group homomorphism $\varphi : PGL(3, K) \rightarrow \operatorname{Aut}(K(x, y))$. Also show that φ is injective.
 - (b) Can you find some other automorphisms in Aut(K(x, y)) PGL(3, K)?
 - (c) * Describe $\operatorname{Aut}(K(x, y))$.