Advanced Algebra I Homework 11 due on Dec. 22, 2006

- (1) Complete the uncompleted proof in the lecture. Especially, the properties of Lagrange resovents.
- (2) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree p, where p is an odd prime. Suppose furthermore that f(x) has only 2 complex roots. Then Galois group of f(x) is S_p .
- (3) (*) Construct an example $f(x) \in \mathbb{Q}[x]$ such that Galois group is A_5 .
- (4) Let p be prime. We consider $f_{a,b} : \mathbb{Z}_p \to \mathbb{Z}_p$, given by $f_{a,b}(x) = ax + b$ with $a \neq 0$. Let

$$GA(p) := \{ f_{a,b} | a, b \in \mathbb{Z}_p, a \neq 0 \}.$$

- (a) GA(p) can be viewed as a subgroup of S_p . It is solvable and transitive of order |GA(p)| = p(p-1).
- (b) (*) A subgroup $H < S_p$ which is solvable and transitive is conjugate to a subgroup of GA(p).
- (5) Consider $f(x) = x^p x a \in \mathbb{F}_p[x]$. Is it irreducible for all $a \in \mathbb{F}_p^*$?
- (6) For any give cyclic group Z_n, there exists a finite Galois extension F/Q whose Galois group is Z_n.

(*) For For any give abelain group G, there exists a finite Galois extension F/\mathbb{Q} whose Galois group is G.

(7) Give an example of F/\mathbb{Q} such that F is contained in a radical extension, but F/\mathbb{Q} is not radical.