(1) * Complete the uncompleted proof in the lecture.

(2) Consider the cyclotomic extension $\mathbb{Q}(\zeta)/\mathbb{Q}$, where $\zeta = e^{\frac{2\pi i}{7}}$. Determine its Galois groups, all intermediate subfields, and the minimal polynomial of $\zeta + \zeta^{-1}$ over \mathbb{Q}.

(3) Every element in a finite field can be written as sum of two squares.

(4) Let F be the algebraic closure of \mathbb{F}_p.
 (a) The frobenius map $\varphi : u \mapsto u^p$ is a \mathbb{F}_p-automorphism.
 (b) F is Galois over \mathbb{F}_p.
 (c) The subgroup generated by φ is a proper subgroup.
 (d) $\text{Gal}_{\mathbb{F}_p} F$ is abelian.

(5) (*) What can you say on the Galois group of \mathbb{Q} over \mathbb{Q}?

(6) We consider cyclotomic polynomials over \mathbb{Q}.
 (a) If p is prime, then $g_{p^n}(x) = g_p(x^{p^{k-1}})$.
 (b) If p is prime and $(p, n) = 1$, then $g_{p^n}(x) = g_n(x^{p^k}) g_n(x)$.
 (c) $g_n(1) = \begin{cases}
p & \text{if } n = p^k (k > 0), \\
0 & \text{if } n = 1, \\
1 & \text{otherwise.} \end{cases}$

(7) How many irreducible polynomials of degree n over \mathbb{F}_p?