Advanced Algebra I Homework 10 due on Dec. 15, 2006

- (1) * Complete the uncompleted proof in the lecture.
- (2) Consider the cyclotomic extension $\mathbb{Q}(\zeta)/\mathbb{Q}$, where $\zeta = e^{\frac{2\pi i}{7}}$. Determine its Galois groups, all intermediate subfields, and the minimal polynomial of $\zeta + \zeta^{-1}$ over \mathbb{Q} .
- (3) Every element in a finite field can be written as sum of two squares.
- (4) Let F be the algebraic closure of \mathbb{F}_p .
 - (a) The frobenius map $\varphi: u \mapsto u^p$ is a \mathbb{F}_p -automorphism.
 - (b) F is Galois over \mathbb{F}_p .
 - (c) The subgroup generated by φ is a proper subgroup.
 - (d) $\operatorname{Gal}_{\mathbb{F}_n} F$ is abelian.
- (5) (*) What can you say on the Galois group of $\overline{\mathbb{Q}}$ over \mathbb{Q} ?
- (6) We consider cyclotomic polynomials over \mathbb{Q} .
 - (a) If p is prime, then $g_{p^k}(x) = g_p(x^{p^{k-1}})$.
 - (b) If p is prime and (p,n) = 1, then $g_{pn}(x) = \frac{g_n(x^p)}{g_n(x)}$.

(c)
$$g_n(1) = \begin{cases} p & \text{if } n = p^k(k > 0), \\ 0 & \text{if } n = 1, \end{cases}$$

$$\begin{cases} 0 & \text{if } n = 1, \\ 1 & 1 & 1 \end{cases}$$

- 1 otherwise.
- (7) How many irreducible polynomials of degree n over \mathbb{F}_p ?