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1. Set Theory

We recall some set theory that will be frequently used in the sequel
or that is not covered in the basic college course. However, we will keep
this chapter as minimum as possible.

We assume the notion of ”set” and some basic operation of sets
without bothering their definition.

1.1. Zorn’s Lemma.

Definition 1.1.1. A set S is said to be partially ordered if there is
a relation ≤ such that

(1) (reflexive) x ≤ x
(2) (anti-symmetric) if x ≤ y and y ≤ x, then x = y.
(3) (transitive) if x ≤ y and y ≤ z then x ≤ z.

We usually call a partially ordered set to be a POSET.

Definition 1.1.2. A pair of elements in an POSET is said to be com-
parable if either x ≤ y or y ≤ x. A set is said to be totally ordered
(or linearly ordered) if every pair is comparable.

We also need the following definition:

Definition 1.1.3. A maximal element of an poset S is an element
m ∈ S such that if m ≤ x then m = x.

Foe a given subset T ⊂ S, an upper bound of T is an element b ∈ S
such that x ≤ b for all x ∈ T .

One has the following

Theorem 1.1.4 (Zorn’s lemma). Let S be a non-empty poset. If every
non-empty totally ordered subset (usually called a ”chain”) has an up-
per bound, then there exists a maximal element in S.

Zorn’s Lemma could be taken as an axiom of set theory. It can be
proved to be equivalent with the Axiom of Choice. It’s also equivalent
to the Well-ordering Principle. We simply give the statement of these.
The reader can find the proof in most of the books on set theory.

An ordered set is said to be well-ordered if it is totally ordered and
every non-empty subset B has a least element, i.e. an element a ∈ B
such that a ≤ x for all x ∈ B.

Theorem 1.1.5 (Well-ordered Principle). Every non-empty set can be
well-ordered.
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One might wondering that (Q,≤) equipped with the usual ordering is
not well-ordered. So the statement says that there is another ordering
which make the set Q well-ordered.

Example 1.1.6. Let R be a non-zero commutative ring. One can
prove that there exists a maximal ideal by using Zorn’s lemma. The
proof goes as following: Let S = {I C R|I 6= R} equipped with the ⊂
as the partial ordering. S 6= ∅ because 0 ∈ S. For a chain {Ij}j∈J ,
one has a upper bound I = ∪Ij. Then we have a maximal element
in S by Zorn’s lemma. One can easily show that the maximal element
corresponds to a maximal ideal.

1.2. cardinality. In order to compare the ”size of sets”, we introduce
the cardinality.

Definition 1.2.1. Two sets A, B are said to have the same cardinality
if there is a bijection between them, denoted |A| = |B|.
And we say |A| ≤ |B| if there is a injection from A to B.

It’s easy to see that the cardinality has the properties that |A| ≤ |A|
and if |A| ≤ |B|, |B| ≤ |C|, then |A| ≤ |C|. So It’s likely that the
”cardinality are partially ordered” or even totally ordered.

Lemma 1.2.2. Given two set A, B, either |A| ≤ |B| or |B| ≤ |A|.
Sketch. Consider

S = {(C, f)|C ⊂ A, f : C → B is an injection}.
Apply Zorn’s lemma to S, one has an maximal element (D, g), then
one claim that either D = A or im(g) = B.
We leave it as an exercise for the readers. ¤
Theorem 1.2.3 (Schroeder-Bernstein). If |A| ≤ |B| and |B| ≤ |A|,
then |A| = |B|.
Sketch. Let f : A → B (resp. g : B → A) be the given injections
respectively. One needs to construct a bijection by using f and g.

Some parts of A use f and some parts not. So we consider the
partition

A1 := {a ∈ A|a has parentless ancestor in A},
A2 := {a ∈ A|a has parentless ancestor in B},

A3 := {a ∈ A|a has infinite ancestor}.
And so does B.

Then we claim that f restricted to A1, A3 are bijections to B1, B3.
And g restricted to B2, B3 are bijections to A2, A3. So the desired
bijection can be constructed. ¤

We need some more properties of cardinality. If |A| = |{1, .., n}|,
then we write |A| = n. And if |A| = |N| then we write |A| = ℵ0.
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Proposition 1.2.4. If A is infinite, then ℵ0 ≤ |A|.
Sketch. By Axiom of Choice. ¤

Definition 1.2.5.

|A|+ |B| := |AqB|,

|A| · |B| := |A×B|.
We have the following properties:

Proposition 1.2.6.

(1) If |A| is infinite and |B| is finite, then |A + B| = |A|.
(2) If |B| ≤ |A| and |A| is infinite, then |A + B| = |A|.
(3) If |B| ≤ |A| and |A| is infinite, then |A×B| = |A|.

Proof. For (1), take a countable subset A0 in A by Proposition 1.2.4.
One sees that |A0| = |A0|+ |B| by shifting the index by |B|. Then we
have

|A| = |A− A0|+ |A0| = |A− A0|+ |A0|+ |B| = |A|+ |B|.
For (2), it’s enough to see that |A + A| ≤ |A| since clearly

|A| ≤ |A + B| ≤ |A + A|.
Pick an maximal subset X ⊂ A having the property that |X+X| ≤ |X|
by Zorn’s Lemma. One claim that A − X is finite, and then we are
done by (1).

To see the claim, if A−X is infinite, then there is a countable subset
A0 ⊂ A−X. One can construct an injective function AqXqAqX →
AqX which contradicts to the maximality of X.

For (3), it suffices to show that |A×A| = |A|. We sketch the proof.
Let

S = {(B, f)|B is an infinite subset of A, f : B → B×B an bijection}.
S is non-empty because S contains an infinite countable subset. S can
be equipped with natural partial ordering and by Zorn’s Lemma, there
exists a maximal element, say (M, g).

Let C be the complement of M in A. If |C| ≤ |M |, then by (2),
|A| = |M |. Hence there is a bijection h : A → M . It follows that there

is a bijection A
h→ M

G→ M ×M
(h−1,h−1)−→ A× A.

Finally, if |C| ≥ |M |, then there is a subset M1 ∈ C such that
|M1| = |M |. Let M ′ = M ∪M1. One can construct a bijection from
M ′ → M ′ ×M ′. This contradicts to the maximality of M . Hence we
are done. ¤
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2. Group Theory

The concept of groups is a very fundamental one in Mathematics.
It arise as automorphism of certain sets. For example, some geometry
can be described as the groups acting on the geometric objects.

In the first section, we are going to recall some definition and basic
properties of groups in general. In the second section, we introduce
the acting of groups. The groups action can find many applications in
geometry, algebra, and the theory of groups itself. In the third section,
we are would like to take care of various aspects of reducing or factoring
groups into simple ones.

2.1. Basic group theory.

Definition 2.1.1. A group G is a set together with a binary operation
◦ : G×G → G satisfying:

(1) there is an e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.
(2) for all g ∈ G, there is an g−1 ∈ G such that g◦g−1 = g−1◦g = e
(3) for all g1, g2, g3 ∈ G, we have (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

A group is said to be abelian if x ◦ y = y ◦ x for all x, y ∈ G.

For simplicity, we will denote xy for x ◦ y.

A subset H ⊂ G is a subgroup if H is a group by using the binary
operation of G, denoted H < G.

A group homomorphism f : G → H is a function between groups
that respects the structure of groups. That is, a function satisfying
f(xy) = f(x)f(y).
The kernel of f , denote ker(f), is defined to be {x ∈ G|f(x) = eH}.

A subgroup H < G is said to be normal if gHg−1 = H for all g ∈ G,
denoted H CG. Given a subgroup H < G, we note G/H the set of left
cosets, i.e. G/H = {gH|g ∈ G}. When H C G is normal, then G/H
has induced group structure given by xH ◦ yH := xyH. This is called
the quotient group.

We remark that a subgroup is normal if and only if it is the kernel
of some homomorphism. The following lemma is useful

Lemma 2.1.2. Let f : G → H be a group homomorphism. Let N be
a normal subgroup of G contained in ker(f), then there is an induced
homomorphism f̄ : G/N → H.

Proof. Define f̄ : G/N → H by f̄(gN) = f(g). Then it’s routine to
verify it’s well-defined and it’s a group homomorphism. ¤

Regarding group homomorphisms, there are some useful facts:
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Theorem 2.1.3 (First isomorphism theorem). Let f : G → H be
a group homomorphism, then there is an induced isomorphism f̄ :
G/ ker(f) ∼= im(f).
In particular, if f is surjective, then f̄ : G/ ker(f) ∼= H.

Proof. Define f̄ : G/ ker(f) → H by f̄(g ker(f)) = f(g). Then it’s
routine to verify it’s well-defined and it’s a injective group homomor-
phism. ¤
Example 2.1.4. Let G be the set of all maps Ta,b : R → R such that
Ta,b(x) = ax + b with a 6= 0. Then G is a group under composition.
There are two natural subgroups:
A := {Ta,0} ∼= R∗, the multiplication group.
N := {T1,b} ∼= R, the translation group.
There is a group homomorphism f : G → R∗ by f(Ta,b) = a. Its kernel
is N , which is a normal subgroup of G. So we have G/N ∼= A.
Moreover, G = NA = AN and N ∩ A = {e}. So in fact G is the
semidirect product of A and N .

Theorem 2.1.5 (Second isomorphism theorem). Let H, K be sub-
groups of G. Then we have group isomorphism

H/(H ∩K) ∼= HK/K,

when
1. H < NG(K) or especially,
2. K C G.

Sketch. Recall that NG(K) := {x ∈ G|xKx−1 = K} denotes the nor-
malizer of K in G. It is the maximal subgroup of G in which K is
normal. In particular KCNG(K). So KCG if and only if G = NG(K).

Also one can check that if H < NG(K), then HK = KH < NG(K)
is a subgroup of G. Moreover, K C HK.

On the other hand, if H < NG(K), then H ∩ K C H. Thus both
sides are groups.

Finally, we consider f : H → HK/K by f(h) = hK. It’s easy to
check that f is surjective with kernel H ∩ K. By first isomorphism
theorem, we proved (1). And (2) is just a special case of (1). ¤

Given a surjective homomorphism f : G → H, by First isomorphism
theorem, H ∼= G/N where N = ker(f) is a normal subgroup. It’s
natural to study the group structures between them. It’s easy to see
that there is a map

{K < G/N} f−1→ {L < G|N < L}.
In fact, this map is bijective. Moreover, it sends normal subgroups to
normal subgroups.
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Theorem 2.1.6 (Third isomorphism theorem). Given N CG and K C
G containing N . Then K/N C G/N . Moreover, (G/N)/(K/N) ∼=
G/K.

Sketch. It’s easy to check that K/N C G/N by definition.
In fact, we consider f : G → G/K. Since N C G and N is contained
in ker(F ) = K, by Lemma 2.1.2, we have an induced map f̄ : G/N →
G/K which is clearly surjective. One checks that ker(ḡ) = K/N and
we are done by Themreom 2.1.3. ¤
2.2. cyclic groups.
Among all groups, perhaps simplest ones are cyclic groups. Let G be
a group. We say that G is cyclic if there is an element x ∈ G such that
every element g ∈ G can be written as xn for some n ∈ Z.

It’s clear that Z under addition is a cyclic group. By the definition,
given a cyclic group G, there is a surjective map f : Z→ G, by n 7→ xn.
This is indeed a group homomorphism. Therefore, by Theorem 2.1.3,
G ∼= Z/ ker(f).

The reader should find no difficulty showing that subgroups of Z is
either {0} or of the form nZ. Since Z is abelian, every subgroup is
normal.

Turning back to the discussion of cyclic groups. There are two cases:
1. ker(f) = 0. Then G ∼= Z. This is called an infinite cyclic group.
2. ker(f) = nZ. Then G ∼= Z/nZ. This is called a cyclic group of order
n, denoted Zn.

There list some properties and leave the proof for the readers.

Proposition 2.2.1. Let G be a cyclic group.
1. Every subgroup is cyclic.
2. Homomorphic image of G is cyclic.
3. If G is a cyclic group of order n, for all d|n there exist a subgroup
of order d.
4. If G is a cyclic group of order n with a generator x, then the set of
generators consist of {xt|(t, n) = 1}.
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2.3. group action.
Group action is one of the most fundamental concept in group theory.
There are many situations that group actions appear naturally. The
purpose of this section is to develop basic language of group action and
apply this to the study of abstract groups.

We will first define the group action and illustrate some previous
known theorem as examples.

Definition 2.3.1. We say a group G acts on a set S, or S is a G-
set, if there is function α : G × S → S, usually denoted α(g, x) = gx,
compatible with group structure, i.e. satisfying:

(1) let e ∈ G be the idetity, then ex = x for all x ∈ S.
(2) g(hx) = (gh)x for all g, h ∈ G, x ∈ S.

By the definition, it’s clear to see that if y = gx, then x = g−1y.
Because x = ex = (g−1g)x = g−1(gx) = g−1y.

Moreover, one can see that given a group action α : G × S → S is
equivalent to have a group homomorphism α̃ : G → A(S), where A(S)
denote the group of bijections on S.

Exercise 2.3.2. There is a bijection between {group action of G on S}
with {group homomorphism G → A(S)}.
Example 2.3.3 (Cayley’s Theorem).

Let G be a finite group of |G| = n. Then there is an injective homo-
morphism G → Sn.

To see this, we consider G acts on G via the group operation, i.e.
G×G → G. Thus we have a homomorphism ϕ : G → A(G).

It’s clear that A(G) = Sn. It’s easy to see that ϕ is injective. ¤
This give an example of ”permutation representation”. That is, rep-

resent a group into permutation groups. We gave another example:

Example 2.3.4.

Let F2 be the field of 2 elements. We would like to see that GL(2,F2) ∼=
S3.

We consider V the 2 dimensional vector space over F2. There are 3
non-zero vector in V , denoted, W := {v1 := e1, v2 := e2, v3 := e1 + e2}.
It’s clear that GL(2,F2) acts on W . Thus we have a representation
GL(2,F2) → A(W ) ∼= S3. One can check that this is indeed an iso-
morphism. ¤

We now introduce two important notions:
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Definition 2.3.5. Suppose G acts on S. For x ∈ S, the orbit of x is
defined as

Ox := {gx|g ∈ G}.
And the stabilizer of x is defined as

Gx := {g ∈ G|gx = x}.
It’s immediate to check the following:

Lemma 2.3.6. Given a group G acting on S. For x, y ∈ S, we have:
1. Gx < G.
2. either Ox = Oy or Ox ∩ Oy = ∅.
3. if y = gx, then Gy = gGxg

−1.

Proposition 2.3.7.
|G| = |Ox| · |Gx|.

Sketch. For given y ∈ Ox, we consider Sy := {g ∈ G|gx = y}. Then

G = ∪y∈OxSy,

which is a disjoint union.
Furthermore, for each y ∈ Ox, we can write y = gx. Then one has

Sy = gGx. In particular |Sy| = |Gx|. We fix a gy such that y = gyx
once and for all. We may define a bijection G → Ox × Gx as sets by
g 7→ (gx, g(ggx)

−1). Thus

|G| = |Ox| · |Gx|.
¤

Corollary 2.3.8 (Lagrange’s Theorem). Let H < G be a subgroup.
Then |G| = |G/H| · |H|.
Proof. We take S = G/H with the action G × G/H → G/H via
α(g, xH) = gxH. For H ∈ S, the stabilizer is H, and the orbit is
G/H. Thus we have

|G| = |G/H| · |H|,
which is the Lagrange’s theorem. ¤

Another way of counting is to consider the decomposition of S into
disjoint union of orbits. Note that if Ox = Oy if and only if y ∈ Ox.
Thus for convenience, we pick a representative in each orbit and let I
be a set of representatives of orbits. We have a disjoint union:

S = ∪x∈IOx.

In particular,

|S| =
∑
x∈I

|Ox|.

This simple minded equation actually give various nice application.
We have the following natural applications.
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Example 2.3.9 (translation).

Let G be a group. One can consider the action G × G → G by
α(g, x) = gx. Such action is called translation. More generally, let
H < G be a subgroup. Then one has translation H × G → G by
(h, x) 7→ hx. In this setting, Ox = Hx. And the set of orbits is G/H,
the right cosets of H in G. Then

|S| =
∑
x∈I

|Ox| = |G/H| · |H|

gives Lagrange theorem again. ¤
Example 2.3.10 (conjugation).

Let G be a group. One can consider the action G × G → G by
α(g, x) = gxg−1. Such action is called conjugation. For a x ∈ G,
Gx = C(x), the centralizer of x in G. And Ox = {gxg−1|g ∈ G} the
conjugacy classes of x in G. So in general, we have

|G| =
∑

conj. classes

|C|,

which is the class equation.
Now assume that G is finite. The class equation now reads:

|G| =
∑
x∈I

|G|/|C(x)|,

where I denotes a representative of conjugacy classes.
And Ox = {x} if and only if x ∈ Z(G), the center of G. So, for G

finite, the class equation now gives

|G| = |Z(G)|+
∑

x∈I,x6∈Z(G)

|G|/|C(x)|.

Which is the usual form of class equation. ¤
The class equation is very useful if the group is a finite p-group. We

recall some definition

Definition 2.3.11. If p is a prime, then a p-group is a group in which
every element has order a power of p.
By a finite p-group, we mean a group G with |G| = pn for some n > 0.

Consider now G is a finite p group acting on S. Let

S0 := {x ∈ S|gx = x,∀g ∈ G}.
Then the class equation can be written as

|S| = |S0|+
∑

x∈I,x6∈S0

|Ox|.

One has the following
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Lemma 2.3.12. Let G be a finite p-group. Keep the notation as above,
then

|S| ≡ |S0| (mod p).

Proof. If x 6∈ S0, then 1 6= |Ox| = pk because |G| = |Ox| · |Gx|. ¤
By consider the conjugation G×G → G, one sees that

Corollary 2.3.13. If G is a finite p-group, then G has non-trivial
center.

By using the similar technique, one can also prove the important
Cauchy’s theorem

Theorem 2.3.14 (Cauchy). Let G be a finite group such that p | |G|.
Then there is an element in G of order p.

sketch. We keep the notation as in Lemma 2.3.12. Let

S := {(a1, ..., ap)|ai ∈ G,
∏

ai = e}.
And consider a group action Zp×S → S by (1, (a1, .., ap)) 7→ (ap, a1, ..., ap−1).
One claims that S0 = {(a, a, ..., a)|a ∈ G, ap = e}.

By the Lemma, one has |S| ≡ |S0| (mod p). It follows that p | |S0|.
In particular, |S0| > 1, hence there is (a, ..., a) ∈ S0 with a 6= e. One
sees that o(a) = p. ¤
Corollary 2.3.15. A finite group G is a p-group if and only it is a
finite p-group.

2.4. Sylow’s theorems. We are now ready to prove Sylow theorems.
The first theorem regards the existence of p-subgroups in a given group.
The second theorem deals with relation between p-subgroups. In par-
ticular, all Sylow p-subgroups are conjugate. The third theorem counts
the number of Sylow p-subgroups.

Theorem 2.4.1 (First Sylow theorem). Let G be a finite group of order
pnm (where (p,m) = 1). Then there are subgroups of order pi for all
0 ≤ i ≤ n.

Furthermore, for each subgroup Hi of order pi, there is a subgroup
Hi+1 of order pi+1 such that Hi C Hi+1 for 0 ≤ i ≤ n− 1.

In particular, there exists a subgroup of order pn, which is maximal
possible, called Sylow p-subgroup. We recall the useful lemma which
will be used frequently.

Lemma 2.4.2. Let G be a finite p-group. Then

|S| ≡ |S0| (mod p).

proof of the theorem. We will find subgroup of order pi inductively. By
Cauchy’s theorem, there is a subgroup of order p. Suppose that H
is a subgroup of order pi. Consider the group action that H acts on
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S = G/H by translation, i.e. H × G/H → G/H by h(xH) := hxH.
One shows that xH ∈ S0 if and only if xH = hxH for all h ∈ H if and
only if x ∈ NG(H). Thus |S0| = |NG(H)/H|.

If i < n, then

|S0| ∼= |S| = pn−im ≡ 0 (mod p).

By Cauchy’s theorem, the group NG(H)/H contains a subgroup of or-
der p. The subgroup is of the form H1/H, hence |H1| = pi+1. Moreover,
H C H1. ¤
Example 2.4.3. If G is a finite p-group of order pn, then one has a
series of subgroups {e} = H0 < H1 < ... < Hn = G such that |Hi| = pi

and Hi C Hi+1, Hi+1/Hi
∼= Zp. In particular, G is solvable.

Definition 2.4.4. A subgroup P of G is a Sylow p-subgroup if P is a
maximal p-subgroup of G.

If G is finite of order pnm then a subgroup P is a Sylow p-subgroup
if and only if |P | = pn by the proof of the first theorem.

Theorem 2.4.5 (Second Sylow theorem). Let G be a finite group of
order pnm. If H is a p-subgroup of G, and P is any Sylow p-subgroup
of G, then there exists x ∈ G such that xHx−1 < P .

Proof. Let S = G/P be the set of left cosets and H acts on S by
translation. Thus by Lemma 2.3.12, one has |S0| ≡ |S| = m(mod p).
Therefore, S0 6= ∅. One has

xP ∈ S0 ⇔ hxP = xP ∀h ∈ H ⇔ x−1Hx < P.

This completes the proof. ¤
An immedaitely but important consequence is that any two Sylow

p-subgroups are conjugate.

Theorem 2.4.6 (Third Sylow theorem). Let G be a finite group of
order pnm. The number of Sylow p-subgroups divides |G| and is of the
form kp + 1.

Proof. Let S be the conjugate class of a Sylow p-subgroup P (this is the
same as the set of all Sylow p-subgroups). We consider the action that
G acts on S by conjugation, then the action is transitive, i.e. for any
x, y ∈ S, there exists g ∈ G such that y = gx. In particular Ox = S.
Hence |S| | |G| for |G| = |Gx| · |Ox|.

Furthermore, we consider the action P × S → S by conjugation.
Then

Q ∈ S0 ⇔ xQx−1 = Q ∀x ∈ P ⇔ P < NG(Q).

Both P, Q are Sylow p-subgroup of NG(Q) and therefore conjugate in
NG(Q). However, Q C NG(Q), Q has no conjugate other than itself.
Thus one concludes that P = Q. In particular, S0 = {P}. By Lemma
2.3.12, one has |S| = 1 + kp. ¤
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Example 2.4.7.

Group of order 200 must have normal Sylow subgroups. Hence it’s
not simple. To see this, let rp := number of Sylow p-subgroups. Then
r5 = 1. So if P is a Sylow 5-subgroup. Since gPg−1 is also a Sylow
subgroup, it follows that gPg−1 = P for all g ∈ G. Thus P C G. ¤
Example 2.4.8.

There is no simple group of order 36. To see this, we consider P a
Sylow 3-subgroup. Then r3 = 1 or 4. In case that r3 = 4, let S be
the set of Sylow 3-subgroups. We have a group action G × S → S by
conjugation. Thus we have a group homomorphism ϕ : G → A(S) ∼=
S4. Comparing the cardinality of groups, one sees that ϕ must have
non-trivial kernel. Hence G is not simple. ¤
2.5. groups of small order. We can use the technique developed in
the previous sections to study group of small order in more detail.

First of all, as a direct consequence of Cauchy’s theorem,

Proposition 2.5.1. Let p be a prime. A group of order p is cyclic.

Example 2.5.2.

Classify groups of order 2p.
If p = 2, then this is well-known. So we may assume that p > 2.

First of all there is a subgroup H < G of order p, generated by x, by
Cauchy’s theorem. By Sylow’s third theorem, we have rp = 1, hence H
is normal. Similarly, there is an element of order 2, say y. By normality
of H, we have yxy−1 = xk for some k. Since

x = y2xy−2 = yxky−1 = xk2

,

it follows that k2 ≡ 1( mod p). Hence k ≡ 1 or ≡ −1.
Case 1. k ≡ 1, then xy = yx. It follows that G is abelian. By chinese
Remainder Theorem, G is cyclic.
Case 2. k ≡ −1, then xy = yx−1. These kind of group is called
dihedral groups, denoted D2p. ¤
Example 2.5.3.

Let p, q be primes. If |G| = pq, then its structure can be determined
similarly.
We assume that p > q. Then there are x, y ∈ G of order p, q respec-
tively. Moreover, H :=< x > CG. We have yxy−1 = xk for some k.
Since

x = yqxy−q = yxky−1 = xkq

,

it follows that kq ≡ 1( mod p). Now the situation depends on the
structure of Z∗p. Recall that Z∗p ∼= Zp−1 is cyclic.
Case 1. q - p − 1, then kq ≡ 1( mod p) implies that k ≡ 1. Hence
xy = yx. It follows that G is abelian. By chinese Remainder Theorem,
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G is cyclic.
Case 2. q | p − 1, then kq ≡ 1( mod p) has q solutions, k ≡
a, a2, ..., aq−1, aq ≡ 1. If we pick k ≡ a, then we determined a group G1

which is generated by x1, y1 with y1x1y
−1
1 = xa

1. If we pick k ≡ a2, then
we determined a group G2 which is generated by x2, y2 with y2x2y

−1
2 =

xa2

2 . Note that the map ϕ : G2 → G1 by ϕ(y2) = y2
1, ϕ(x2) = x1 gives

an isomorphism. Therefore, for different solution k ≡ a, a2, ..., aq−1,
they determined the same group. ¤

There is a useful construction to produce groups from simple ones
called semi-direct product which we now introduce. Given two
groups G,H and a homomorphism θ : H → Aut(G). Let G×θH be the
set G×H with the binary operation (g, h)(g′, h′) = (g(θ(h)(g′)), hh′).
One can verify that this produce a group.

For example, in the case 2 of above example, we have G = Zp, H = Zq

and we consider θ : Zq → Aut(Zp) ∼= Z∗p by θ(1) = a. Then we obtained
Zp ×θ Zq. Such group is called a metacyclic groups.

Proposition 2.5.4. Let p be a primes. If |G| = p2, then G is abelian.

We will discuss the structure of finite ableina groups later. In prin-
ciple, their structure are pretty easy.

sketch. By class equation, one sees that Z(G) is non-trivial.
Case 1. if |Z(G)| = p2, then G is abelian.
Case 2. if |Z(G)| = p, then G/Z(G) is a group of order p , hence
cyclic. We pick x ∈ G such that G/Z(G) is generated by xZ(G). We
also pick y ∈ G such that Z(G) is generated by y. It’s easy to check
that G is generated by x, y. Note that xy = yx, it follows that G is
abelian. ¤

Using above properties, one can classified groups of order ≤ 15 com-
pletely unless for order 8 and 12. In fact groups of order 8 are either
abelian or D8 or Q8. Where Q8 is the quaterion group defined by
{i, j, k,−i,−j,−k, 1,−1|i2 = j2 = k2 = −1, ijk = −1}.

Easy example of non-abelian groups of order 12 includes A4, D12. In
fact there is one more, T =< a, b|a6 = b4 = 1, b2 = a3 = (ab)2 >.

Theorem 2.5.5. every non-abelian group G of order 12 is isomorphic
to A4, D12 or T .

sketch. Let P be a Sylow 3-subgroup. We first consider the action
G × G/P → G/P by translation. It gives rise to a homomorphism
ϕ : G → A(G/P ) ∼= S4. It’s clear that ker(ϕ) < P .
Case 1. ker(ϕ) = {e}, then G ∼= A4.
Case 2. ker(ϕ) = P . Then we need to wok harder. So now, P C G
and P is the unique Sylow 3-subgroup. Let P = {x, x2, x3 = e}, then
x, x2 are the only element in G of order 3.

Let K be a Sylow 2-subgroup, then K is either V4 or Z4.
Case 2.i. If K ∼= V4, by computing the relation between generators,
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one can show that G ∼= D12.
Case 2.ii. If K ∼= Z4, by computing the relation between generators,
one can show that G ∼= T .

¤
Groups of order pn, n ≥ 3 could be very complicated. Here just give

two more examples.

Example 2.5.6.

Let G < GL(2,C) be the group generated by A =

(
0 ω
ω 0

)
and

B =

(
0 1
−1 0

)
, where ω is a primitive 2n−1th root of unity for n ≥ 3.

Then G is a group of order 2n. ¤
Example 2.5.7.

Let G < GL(3,C) be the group generated by A =




1 0 0
0 ω 0
0 0 ω2




and B =




0 1 0
0 0 1
1 0 0


, where ω is a primitive 3th root of unity. Then

G is a group of order 27. ¤
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2.6. symmetry of the plane. A map from plane itself is called a
rigid motion, or an isometry, if it is distance-preserving. Let S be
a subset of the plane. Then the subgroups of rigid motions preserving
S is called the symmetry of S. It’s well-known that:

Example 2.6.1.

Let S be the regular n-gon centered at the origin. Then the symme-
try of S id the group D2n. ¤

In order to build this is a more solid foundation, we need to work a
little bit more.

A list of rigid motions consists of:
1. Orientation-preserving motions:
a. Translation.
b. Rotation.
2. Orientation-reversing motions:
a. Reflection.
b. Glide reflection, i.e. reflecting about a line l and then translating
by a non-zero vector a parallel to l.

Theorem 2.6.2. The above list is complete.

Sketch. We first fix some notations:
ta: translation by a vector a.
ρθ: rotation by an angle θ about the origin.
r: reflection about the x-axis.

Step 1. Orientation preserving motions that fix the origin are {ρθ}.
Step 2. Let m ne an orientation preserving motion. If m(o) = a, then
t−am = ρθ for some θ. by Step 1. Thus m = taρθ.
Step 3. If m is not a translation, i.e. θ 6= 0, then m is a rotation about
a point p. To see this, first show that m has a fixed point, denoted p,
if θ 6= 0. A point on the plane can be written as p + x,

m(p+x) = taρθ(p+x) = ρθ(p+x)+ a = ρθ(p)+ ρθ(x)+ a = p+ ρθ(x).

Step 4. Orientation reversing motions that fix the origin are {ρθr}.
For given such m, it’s clear that rm preserves the orientation and fixes
the origin. So rm = ρθ for some θ. Thus m = rρθ = ρ−θr. Also note
that ρθr is the reflection about l, denoted rl, which is the line obtained
by rotating x-axis by 1

2
θ.

Step 5. Let m be an orientation reversing motion. Then m(o) = a for
some a. Thus t−am is an orientation reversing motion that fixes origin,
hence t−am = rl. Therefore, m = tarl which is a glide reflection. ¤

Indeed, let O(2,R) be the subgroup of motions that fix the origin.
Then O(2,R) is generated by {ρθ, r}. Let M be the groups of plane
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rigid motions, then there is a group action M × R2 → R2. The orbit
of o is the whole R2 and the stabilizer of o is O(2,R).

For readers who want to know more about symmetry, we refer [Artin],
Chapter 5.

2.7. abelian groups. In this section, we are going to study a simple
but important category of groups, the abelian groups.

Given an abelian group G, we usually use + to denote the operation.
We say that G can be generated by X ⊂ G, denoted G =< X >, if
every element of G can be written as

∑
nixi for some ni ∈ Z and

xi ∈ X. Note that ni 6= 0 for all but finitely many i.
A basis of an abelian group G is a linearly independent generating

subset X. That is for distinct x1, ..., xk ∈ X,
∑

nixi = 0 implies that
ni for all i.

An abelian group with a basis is called a free abelian group. And
the rank, denoted rk(F ), is |X|.

It’s easy to prove that an abelian group is free if and only if it’s a
direct sum of Z.

On the other hand, given a set X, we can always construct a free
abelian group on the set X by consider the set

F := {
∑

nxx|x ∈ X,nx ∈ Z, nx = 0 for all but finitely many x}.
The group operation on F is nothing but

∑
nxx +

∑
mxx :=

∑
(nx +

mx)x. It’s clear that X is a basis of F in this construction.

Example 2.7.1.

This construction appeared, for example, in algebraic topology. The
groups of 1-chains is the free abelian group on the set of simplicial
1-chains. ¤
Example 2.7.2.

Let X be a Riemann surface, then the group of divisors, Div(X), is
the free abelian group on the set X. ¤

It has the following universal property:

Proposition 2.7.3. Let F be a free abelian group with basis X. For
any function f : X → G to an abelian group G. There exist a unique
homomorphism ϕ : F → G extending f .

Proof. Let ϕ(
∑

nxx) =
∑

nxf(x), then verify it. ¤
Corollary 2.7.4. Every abelian group is a quotient of a free abelian
group.

Proof. LetG be an abelian group. Let F be the free abelian group
on the set G. Consider f : G → G the identity map. Then we are
done. ¤
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Example 2.7.5.

Q can be describe as following. Let X = {x1, ..., xn, ...} and F the
free abelian group on the set X. Take f : X → Q by f(xi) = 1

i
. Then

Q is a quotient of F . ¤
We are now ready to state develop to main theorem of this section.

We need the following:

Lemma 2.7.6. If {x1, ..., xn} is a basis of F , then {x1, ..., xj−1, xj +
axi, xj+1, ..., xn} is also a basis of F for i 6= j and a ∈ Z.

Theorem 2.7.7. Let F be a free abelian group of rank n and G is a
non-zero subgroup of F , then there exists a basis {x1, ...., xn} of F , an
integer r (1 ≤ r ≤ n) and positive integer d1, ..., dr such that d1|d2|...|dr

and G is free abelian group with basis {d1x1, ..., drxr}.
Sketch. If n = 1, this is easy.

By induction, we assume that the theorem is true for all abelian
groups of rank ≤ n− 1. Let

S := {s ∈ Z|sy1 + ...knyn ∈ G, for some basis of F , y1, ..., yn}.
Let d1 be the smallest positive integer in S. By changing basis, we

may have {x1, y2, ..., yn} basis of F and d1x1 ∈ G.
Let H =< y2, ..., yn >. It’s clear that F = H ⊕ Zx1. We claim that

G = (H ∩G)⊕ Zd1x1.
Apply induction hypothesis to G ∩H < H, then we are done. ¤

Corollary 2.7.8 (fundamental theorem of finitely generated abelian
groups). Let G be a finitely generated abelian group. Then there exist
an integer r and positive integers d1|d2|...|dt such that

G ∼= Zd1 ⊕ ...⊕ Zdt ⊕ Zr.

Proof. Let X be a finite generating set of G. And let F be the free
abelian group on the set X. Then there is a surjective homomorphism
F → G. Apply Theorem 2.7.7 to ker < F . ¤

Now we restrict ourselves to finite abelian groups. Let G be a finite
abelian group, by Corollary 2.7.8,

G ∼= Zd1 ⊕ ...⊕ Zdt .

These d1, ..., dt are called invariant factors. We consider the factor-
ization of di into prime factors, then we have for all i,

di = p
ai,1

1 ...p
ai,k

k .

By Chinese Remainder Theorem, we have for all i,

Zdi
∼= Zp

ai,1
1

⊕ ...⊕ Z
p

ai,k
k

.

Therefore,
G ∼= ⊕k

j=1(⊕t
i=1Zp

ai,j
j

).
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It’s clear that ⊕t
i=1Zp

ai,j
j

is the Sylow pj-subgroup. And these p
ai,j

j are

called elementary divisors.

Example 2.7.9.

Let G = Z100⊕Z40. By Chinese Remainder Theorem, Z100
∼= Z4⊕Z25

and Z40
∼= Z8 ⊕ Z5. Thus

G ∼= Z4 ⊕ Z8 ⊕ Z5 ⊕ Z25
∼= Z20 ⊕ Z200.

So invariant factors are 20, 200 and elementary divisors are 4, 8, 5, 25.
¤

Example 2.7.10.

Let G = Zm ⊕ Zn. Then invariant factors are (m,n), [m,n], the gcd
and lcm of m,n. ¤
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Let G be an abelian group, there there is a natural important ho-
momorphism m : G → G by m(x) := mx for m ∈ N. The image is
denoted mG and kernel is denoted G[m]. Let G(p) = {u ∈ G|o(u) =
pn for some n ≥ 0}. One can show that G(p) is the Sylow p-subgroup
of G. And G is a direct sum of Sylow subgroups. Thus it remains
to study finite abelian p-groups. The only non-trivial part of classical
theory is showing that a finite abelian p-group is a direct sum of cyclic
p-groups.

We also remark that for a given finitely generated abelian group G,
the rank, invariant factors, and elementary divisors are unique. To see
this, we proceed as following steps:
1. if Zn ∼= Zm, then n = m.
To see this, let G ∼= Zn ∼= Zm. We consider G/2G ∼= Zn

2
∼= Zm

2 . Thus
n = m.
2. let Gtor := {u ∈ G|mu = 0 for some m}. It’s clear that Gtor < G.
3. If

G1 = Zd1 ⊕ ...⊕ Zdt ⊕ Zr,
∼= G2 = Zd′1 ⊕ ...⊕ Zd′

t′
⊕ Zr′

Then clearly, G1tor
∼= G2tor and also G1/G1tor = Zr ∼= G2/G2tor = Zr′ .

Hence in particular r = r′.
4. It remains to show that t = t′ and di = d′i.
To see this, it’s equivalent to show the uniqueness of elementary divisors
of finite abelian groups. So now we assume that G is finite abelian
group. Also note that if G1

∼= G2, then G1(p) ∼= G2(p). Thus we may
even assume that G is a finite abelian p-group.

Suppose now that

G1 := Zpa1 ⊕ ...⊕ Zpat

∼= G2 := Zpb1 ⊕ ...⊕ Zpbs ,

with a1 ≤ a2 ≤ ... ≤ at, b1 ≤ b2 ≤ ... ≤ bs.
Then we have pG1

∼= pG2 and G1/pG1
∼= G2/pG2. Note that

G1/pG1
∼= Zc1

p , with c1 = {i|ai > 1}. It follows that c1(G1) = c1(G2).
Similarly, we can define ck := {i|ai > k} and ck(G1) = ck(G2).

Moreover, G1[p] ∼= Zt
p
∼= G2[p] ∼= Zs

p. Hence t = s.
Since t, c1(G1), c2(G1)... determine a1, ..., at uniquely and s, c1(G2), c2(G2)...

determine b1, ..., bs uniquely. It follows that t = s and ai = bi for all i.
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2.8. Nilpotent groups, solvable groups. Given a group G, if G has
a normal subgroup N , then we have a quotient group G/N . One can
expect that knowing N and G/N would give some information on G.
In this section, we are going to introduce the general technique of this
idea.

Let G be a group. If G has no non-trivial normal subgroup, then G
is said to be simple.

In general, there are two natural way to produce normal subgroups.
The first one is the the center Z(G). It is a normal subgroup of G.
And we have the canonical projection G → G/Z(G). Let C2(G) be
the inverse image of Z(G/Z(G)) in G. By the correspondence theo-
rem, Z(G/Z(G)) is a normal subgroup of G/Z(G) hence C2(G) is a
normal subgroup of G. And then let C3(G) to be the inverse image of
Z(G/C2(G)). By doing this inductively, one has an ascending chain of
normal subgroups

{e} < C1(G) := Z(G) < C2(G) < ...

Notice that by the construction, each Ci(G) C G and Ci+1(G)/Ci(G)
is abelian.

Definition 2.8.1. G is nilpotent if Cn(G) = G for some n.

Proposition 2.8.2. A finite p-group is nilpotent.

Proof. We use the fact that a finite p-group has non-trivial center. Thus
one has Ci � Ci+1. The group G has finite order thus the ascending
chain must terminates, say at Cn. If Cn 6= G, then G/Cn has non-trivial
center. One has Cn � Cn+1 which is impossible. Hence Cn = G. ¤
Theorem 2.8.3. If H, K are nilpotent, so is H ×K.

Proof. The key observation is that Z(H ×K) = Z(H)× Z(K). Then
inductively, one proves that Ci(H ×K) = Ci(H)×Ci(K). If Cn(H) =
H, Cm(K) = K then Cl(H ×K) for l = max(m,n). ¤
Lemma 2.8.4. Let G be a nilpotent group and H � G be a proper
subgroup. Then H � NG(H).

Proof. Let C0(G) = {e}. Let k be the largest index such that Ck(G) <
H. Then Ck+1(G) 6< H. Pick a ∈ Ck+1 −H, then for every h ∈ H, we
have Ckha = CkhCka = CkaCkh = Ckah for Ck+1/Ck = Z(G/Ck(G)).
Thus aha−1 ∈ Ckh ⊂ H for all h ∈ H. That is a ∈ NG(H)−H. ¤

Then we are ready to prove the following:

Theorem 2.8.5. A finite group is nilpotent if and only if it’s a direct
product of Sylow p-subgroups.

Proof. By the previous two results, it’s clear that a direct product of
Sylow p-subgroups is nilpotent.
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Conversely, if G is nilpotent, then we will prove that every Sylow
p-subgroup is a normal subgroup of G. By checking the decomposition
criterion, one has the required decomposition.

It remains to show that if P is Sylow p-subgroup, then P C G.
To this end, it suffices to prove that NG(P ) = G. By applying this
Claim to NG(P ), then it says that NG(P ) can’t be a proper subgroup
of G since NG(NG(P )) = NG(P ). Thus it follows that NG(P ) = G. ¤
Example 2.8.6.

Let G = D12 = {xiyj|x6 = y2 = e, xy = yx5}. One of it’s Sylow 2-
subgroup is {e, x3, y, x3y} isomorphic to V4 and it’s Sylow 3-subgroup
is {e, x2, x4} ∼= Z3.

However Z(G) = {e, x3} and G/Z(G) ∼= D6
∼= S3 and Z(S3) = {e}.

Thus G is not nilpotent. And therefore, D12 6∼= V4 × Z3. ¤
We have seen that we have a series of subgroup by taking centers.

Another natural construction is to take commutators.

Definition 2.8.7. Let G be a group. The commutator of G, denoted
G′ is the subgroup generated by the subset {aba−1b−1|a, b ∈ G}.

Roughly speaking, the subgroup G′ measures the non-commutativity
of a group. More precisely, G′ = {e}, if and only G is abelian. The
smaller G′, the more commutative it is.

Proposition 2.8.8. We have:
1. G′ C G,
2. and G/G′ is ableian.
3. if N C G, then G/N is abelian if and only if G′ < N .

Proof. 1.) for all g ∈ G, g(aba−1b−1)g−1 ∈ G′, hence gG′g < G′. So
G′ C G.
2.) aG′bG′ = abG′ = ab(b−1a−1ba)G′ = baG′ = bG′aG′.
3.) Consider π : G → G/N . If G/N is abelian, then π(aba−1b−1) = e,
hence G′ < N . Conversely, if G′ < N , we have a surjective homomor-
phism G/G′ → G/N . G/G′ is abelian, hence so is it homomorphic
image G/N . ¤
Definition 2.8.9. We can define the the commutator inductively, i.e.
G(2) := (G′)′, etc. The G(i) is called the i-th derived subgroup of G. It’s
clear that G > G′ > G(2) > ....

A group is solvable is G(n) = {e} for some n.

Example 2.8.10.

Take G = S4. The commutator is the smallest subgroup that G/G′

is abelian. Since the only non-trivial normal subgroups of S4 are V, A4.
It’s clear that G′ = A4 (Or one can prove this by hand). Similarly, one
finds that G(2) = A′

4 = V , and G(3) = {e}. Hence S4 is solvable. ¤
Another useful description of solvable groups is the groups with solv-

able series.
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Definition 2.8.11. A groups G has a subnormal series if there is a
series of subgroups of G

G = H0 > H1 > H2 > ... > Hn,

such that Hi C Hi−1 for all 1 ≤ i ≤ n.
A subnormal series is a solvable series if Hn = {e} and Hi−1/Hi is

abelian for all 1 ≤ i ≤ n.
A subnormal series is a normal series if all Hi are normal subgroups

of G.

Theorem 2.8.12. A group is solvable if and only it has a solvable
series.

Proof. It’s clear that G > G′ > ...G(n) = {e} is a solvable series. It
suffices to prove that a group with a solvable series is solvable. Suppose
now that G has a sovable series {e} = Hn < ... < H0 = G. First
observe that G′ < H1 since G/H1 is abelian. We claim that G(i) < Hi

for all i inductively. Which can be proved by the observation that the
intersection of the series {e} = Hn < ... < H0 = G with G(i) gives a
solvable series of G(i). ¤
Example 2.8.13.

A finite p-group has a solvable series, hence is solvable.
Moreover, a nilpotent group is solvable. To see this, let G be a

nilpotent group. Then there exist a series

{e} < C1(G) := Z(G) < C2(G) < ... < Cn(G) = G.

Notice that Ci+1(G)/Ci(G) = Z(G/Ci(G)) is abelian. Therefore this
is a solvable series. ¤
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Proposition 2.8.14. Let H be a subgroup of a solvable group G, then
H is solvable.

Let N be a normal subgroup of G. Then G is solvable if and only if
both N and G/N are solvable.

Sketch. G has a solvable series, intersecting the series with H gives a
solvable series of H.

If N CG, then we have π : G → G/N . Projecting the solvable series
of G to G/N gives a solvable series of G/N .

Finally, if N and G/N are solvable, they have solvable series respec-
tively. Apply π−1 to the solvable series of G/N gives a series from N
to G. Combine this series with the serious of H gives a solvable series
of G. ¤
Example 2.8.15.

We will prove in the coming subsection that A5 is not solvable, hence
so is Sn for n ≥ 5. ¤
2.9. normal and subnormal series. We turning back to series a
little bit more. A subnormal series is called a composition series if
every quotient is a simple group.

Definition 2.9.1. For a subnormal series, {e} = Hn < ... < H0 = G,
the factors of the series are the quotient groups Hi−1/Hi and the length
is the number of non-trivial factors. A refinement is a series obtained
by finite steps of one-step refinement which is {e} = Hn < . < K <
.. < H0 = G.

Definition 2.9.2. Two series are said to be equivalent if there is a
one-to-one correspondence between the non-trivial factors. And the
corresponding factors groups are isomorphism.

It’s clear that this defines an equivalent relation on subnormal series.
The main theorems are

Theorem 2.9.3 (Schreier). Any two subnormal (resp. normal) series
of a group G have a subnormal (resp. normal) refinement that are
equivalent.

An immediate corollary is the famous Jordan-Hölder theorem.

Theorem 2.9.4 (Jordan-Hölder). Any two composition series of a
group are equivalent.

The main technique is the Zassenhaus Lemma, or sometimes called
butterfly Lemma.

Lemma 2.9.5 (Zassenhaus). Let A∗ C A and B∗ C B be subgroups of
G. Then
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(1) A∗(A ∩B∗) C A∗(A ∩B).
(2) B∗(A ∩B) C B∗(A ∩B).
(3) A∗(A ∩B)/A∗(A ∩B∗) ∼= B∗(A ∩B)/B∗(A∗ ∩B).

Sketch. It’s clear that A ∩B∗ = (A ∩B) ∩B∗ C A ∩B. And similarly,
A∗ ∩ B C A ∩ B. Let D = (A ∩ B∗)(A∗ ∩ B) C A ∩ B. One can have
a well-defined homomorphism f : A∗(A ∩ B) → A ∩ B/D with kernel
A∗(A ∩B∗). And similarly for the other homomorphism. ¤

proof of Schreier’s theorem. Let {e} = Gn+1 < ... < G0 = G and
{e} = Hm+1 < ... < H0 = G be two subnormal series. Let G(i, j) :=
Gi+1(Gi ∩ Hj) (resp. H(i, j) := Hj+1(Gi ∩ Hj)). Then one has a
refinement

G = G(0, 0) > G(0, 1) > ... > G(0,m) > G(1, 0) > ... > G(n,m),

G = H(0, 0) > H(1, 0) > ... > H(n, 0) > H(0, 1) > ... > H(n,m).

By applying Zaseenhaus Lemma to Gi+1, Gi, Hj+1, Hj, one has

G(i, j)/G(i, j + 1) ∼= H(i, j)/H(i + 1, j).

¤

2.10. simplicity of A5. An element in Sn is said to be have cycle
structure (m1, .., mr) with m1 ≥ m2 ≥ ... ≥ mr , m1 + ...+mr = n if its
cycle decomposition is of length m1, ..., mr respectively. For example,
(1, 2)(3, 4) ∈ S4 has cycle structure (2, 2) and (1, 2) ∈ S4 has cycle
structure (2, 1, 1).

Remark 2.10.1. There is a one-to-one correspondence between cycle
structures of Sn and partition of the integer n.

A key observation is that any two elements are conjugate to each
other if and only if they have the same cycle structure. Let’s call
the set of all elements of cycle structure (m1, ..., mr) the cycle class of
(m1, ...mr). A consequence of this fact is that a subgroup N < Sn is
normal if and only if N is union of cycle classes.

Let’s put it another way, given a group G, we can always consider
the group action G × G → G by conjugation. The conjugate classes
are the orbits. A subgroup H < G is normal if and only if it is union
of orbits. If G = Sn, then orbits are cycle classes.

Example 2.10.2. In S4, V is the union of class (1, 1, 1, 1) and (2, 2).
A4 is the union of V and the class (3, 1).

The purpose of this subsection is to show that A5 is a simple non-
abelian group, hence a non-solvable group.

Theorem 2.10.3. A5 is a simple non-abelian group.



25

Proof. One note that in S5, possible cycle structures are (5), (4, 1),(3, 1
, 1),(3, 2), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) with 24, 30, 20, 20, 15, 10, 1 el-
ements in each class. While A5 is the union of classes of (5), (3, 1, 1), (2,
2, 1), (1, 1, 1, 1, 1).

We consider the actions of conjugation α : S5 × A5 → A5 and its
restriction β : A5 × A5 → A5. For σ ∈ A5, let Oα,σ be the orbit of the
α and Oβ,σ be the orbit of the β. And let Gα,σ, Gβ,σ be the stabilizer.

It’s clear that Gα,σ = CS5(σ) and Gβ,σ = CA5(σ) = CS5(σ) ∩ A5.
Thus we have either |Gβ,σ| = 1

2
|Gα,σ| or |Gβ,σ| = |Gα,σ|. Hence |Oβ,σ| =

|Oα,σ| or |Oβ,σ| = 1
2
|Oα,σ|.

case 1. If σ has cycle structure (5), then |Oα,σ| = 24, |Gα,σ| = 5. It
follows that |Gβ,σ| = 5 and hence |Oβ,σ| = 12.

case 2. If σ has cycle structure (3, 1, 1), then |Oα,σ| = 20, |Gα,σ| = 6.
However, one notice that there is an element τ ∈ CS5(σ)−CA5(σ) (e.g.
(45)(123) = (123)(45)). Hence |Gβ,σ| 6= |Gα,σ| and must be 1

2
|Gα,σ| = 3.

Therefore |Oβ,σ| = 20.
case 3. If σ has cycle structure (2, 2, 1),then |Oα,σ| = 15, |Gα,σ| = 8.

It follows that |Oβ,σ| = 15.
Combining all this, if H < A5 is a normal subgroup, then |H| =

1+ 12r1 +20r2 + 15r3, where ri are integers. Moreover |H| | |A5| = 60,
which is impossible unless |H| = 1 or 60. ¤

2.11. simple linear groups. We have seen that A5 is a simple group.
Another important source of simple groups is via the linear groups.

We first introduce some notions. Let V be a m-dimensional vector
space over a field K. Then the general linear group GL(V ) is the
group of all non-singular linear transformations on V . If we choose a
basis {e1, ..., em} of V , then a non-singular linear transformation can
be represented as a non-singular matrix in GL(m,K). If K is a field of
q elements ( thus unique up to isomorphism, which we will see later),
then we may write GL(m, q) instead.

Proposition 2.11.1. |GL(m, q)| = (qm − 1)(qm − q)...(qm − qm−1).

Proof. Let {e1, ..., em} be a basis and A a m × m matrix. A is non-
singular if and only {Ae1, ..., Aem} is again a basis. Or equivalently,
{Ae1, ..., Aem} is linearly independent. Ae1 can have anything but
zero, thus there are qm − 1 choices. And then Ae2 can be anything
independent of Ae1, thus there are qm − q choices. Inductively, we get
the formula. ¤

A matrix (or linear transformation) is called unimodular if deter-
minant is 1. Let SL(V ), (resp. SL(m,K) ) be the subgroups of uni-
modular matrices. An elementary transvection Bij(λ) is a matrix which
is 1 along diagonal, λ as its ij entry, and 0 elsewhere. A transvection
is a matrix B such that is similar (which is conjugate in group theory)
to some Bij(λ). Note that Bij(λ)−1 = Bij(−λ).



26

Lemma 2.11.2. If A ∈ GL(m,K) with det A = µ, then A = UD(µ),
where U is a product of elementary transvections and D = diag(1, ..., 1, µ).

Sketch. Performing elementary row operations by multiplying elemen-
tary transvections on the left. One sees that it reaches a matrix of type
D(µ).

For example, we look at first column. Assume that a21 6= 0. Then
multiply B12(a

−1
21 (1 − a11)), one gets a matrix A′ with A′

11 = 1. Then
multiply B21(−a21), the one gets a matrix A′′ with A′′

11 = 1, A′′
21 =

0. ¤
Proposition 2.11.3. We have:
1. GL(m,K) is a semi-direct product of SL(m, K) by K∗.
2. SL(m,K) is generated by elementary transvections.

Proof. 1. Consider det : GL(m,K) → K∗. It’s clear that this is a group
homomorphism with kernel SL(m,K). Hence SL(m,K) C GL(m,K).
On the other hand, ∆ := {D(µ)|µ ∈ K∗} < GL(m,K) and ∆ ∼= K∗.
One can verify that GL(m,K) = SL(m,K)∆ by the abbove Lemma.
And it’s clear that SL(m,K) ∩∆ = {e}. Thus, we are done.
2. This follows immediately from above Lemma. ¤

We now introduce more notations. Let Z(m,K) (resp. Z(V )) be the
center of GL(m,K). Then it’s easy to see that Z(m,K) is nothing but
scalar matrices. Let SZ(m,K) = Z(m, K) ∩ SL(m,K), the group of
unimodular scalar matrices. One can also verify that Z(SL(m,K)) =
SZ(m,K).

In order to compute the cardinality of SZ(m, K), we recall the fol-
lowing fact:

Proposition 2.11.4. Let K be a field.
1. xn = 1 has at most n solutions in K.
2. Every finite subgroup of K∗ is cyclic. In particular, if K is finite,
then K∗ is cyclic.

As a result, if K is a finite field of q elements, then xm = 1 has
exactly (q − 1, m) solutions. Thus SZ(m, q) = (q − 1,m).

Let PGL(V ) := GL(V )/Z(V ) and PSL(V ) := SL(V )/SZ(V ). Then
we have

|PGL(m, q)| = |SL(m, q)| = (qm − 1)(qm − q)...(qm − qm−1)/(q − 1),

|PSL(m, q)| = (qm − 1)(qm − q)...(qm − qm−1)/d(q − 1),

where d = (q − 1,m).
We now give some more example of finite simple groups.

Theorem 2.11.5. The group PSL(2, q) are simple if and only if q > 3.

Proof. If q = 2, 3, then |PSL(2, 2)| = 6, |PSL(2, 3)| = 12. Hence they
are not simple.
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Assume now that q ≥ 4. Let N C PSL(2, q) and H C SL(2, q) be
its preimage. It is enough to show that if SZ(m, q) � H < SL(m, q),
then H = SL(m, q).
1. For any matrix A ∈ H−SZ(m, q). Then its rational canonical form

is either

[
α 0
0 α−1

]
or

[
0 −1
1 β

]
.

2. In either case, H contains a matrix of the form

[
α 0
β α−1

]
with

α 6= ±1.
To see this, it remains to consider A in the second case. We assume

A =

[
0 −1
1 β

]
. Then TAT−1A−1 =

[
α−2 0

β(α2 − 1) α2

]
∈ H for T =

[
α 0
0 α−1

]
. We can pick α so that α2 6= ±1 (unless q = 5, this case

need some extra care).

3. Let B = B21(1), A =

[
α 0
β α−1

]
with α 6= ±1. Then H contains

BAB−1A−1 = B21(1−α−2), an elementary tranvection with 1−α−2 6=
0.

4. If H contains B21(µ), then UB21(µ)U−1 = B12(−µ) for U =

[
0 −1
1 0

]
.

5. It remains to show that H contains B12(ν) for all ν ∈ K since
SL(m, q) is generated by transvections.

To see this, note that
[

α β
0 α−1

] [
1 µ
0 1

] [
α β
0 α−1

]−1

=

[
1 µα2

0 1

]
.

Let G = {0} ∪ {µ ∈ K|B12(µ) ∈ H}. It’s clear that G is an additive
group and contains all elements of the form µ(α2 − β2).

We claim that G = K.
If char(K) 6= 2, then ν = (1

2
(ν + 1))2 − (1

2
(ν − 1))2. Thus for given

ν ∈ K, νµ−1 = ξ2 − ζ2. It follows that ν ∈ G.
If char(K) = 2, then |K∗| is a cyclic group of odd order. Thus for

ν ∈ K∗, νµ−1 ∈ K∗ and νµ−1 = ζ2 for some ζ. Thus, ν = µζ2 ∈ G. ¤
Example 2.11.6.

On can even show that An is simple for n ≥ 5. ¤
Example 2.11.7.

|PSL(2, 4)| = |PSL(2, 5)| = 60. And they are simple. So In fact,
we have PSL(2, 4) ∼= PSL(2, 5) ∼= A5.
|PSL(2, 7)| = 168, so it can not be An.
PSL(2, 9) ∼= A6. ¤

We finally give some more results concerning simple groups. How-
ever, we are not going to prove these.
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Theorem 2.11.8 (Jordan-Dickson). If m ≥ 3 and V is an m-dimensional
vector space over a field K, then PSL(V ) is simple.

Proposition 2.11.9. PSL(3, 4) and A8 are non-isomorphic simple
groups of the same order.
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3. field theory

3.1. definitions and basic properties. A field F is a set together
two binary operation +, ∗ such that (F, +) is an abelian group with
identity 0, (F ∗ := F − {0}, ∗) is an abelian group with identity 1, and
satisfying a ∗ (b + c) = a ∗ b + a ∗ c.

Let E, F be fields, a homomorphism of fields is nothing but a ring
homomorphism ϕ : E → F . Note that ϕ(1E) = 1F

Example 3.1.1.

Let p be a prime. Then Zp is a field. Let F be a field of p elements,
then clearly there is an isomorphism F ∼= Zp (by sending 1Zp to 1F ).
Thus we usually say the field of p-elements and denoted Fp. ¤

Give a field F , let P be its minimal (non-zero) subfield. Then we
have:

Proposition 3.1.2. P is isomorphic to either Q or Fp.

Proof. Consider the additive subgroup H generated by 1F , then H is
either Z or Zp. If it’s Zp then this is exactly P . And if H = Z, then
one can show that P ∼= Q. ¤
Definition 3.1.3. The minimal subfield if called the prime field of
F . If the prime field is Fp, then we say that F has characteristic p,
denoted char(F ) = p. Otherwise, we say that F has characteristic 0,
denoted char(F ) = 0.

The most important feature for field of characteristic p is that it has
a non-trivial Frobenius map ϕ : F → F, ϕ(x) 7→ xp. To verify that this
is an homomorphism, we need to check that ϕ(x) + ϕ(y) = ϕ(x + y).
Note that px = 0 for all x ∈ F and thus nx = 0 for all n divisible by
p. It follows that Cp

i x = 0 for all 0 < i < p and all x ∈ F . Hence
(x + y)p = xp + yp.

In fact, the FRobenius map is always injective for if xp = yp, then
xp − yp = (x− y)p = 0. Thus x− y = 0.

Example 3.1.4.

We have the following important construction of fields. Let F be a
field, F [x] be the polynomial ring. Let p(x) ∈ F [x] be an irreducible
polynomial. We claim that F [x]/(p(x)) is a field.

Recall that there is a division algorithm on F [x]. That is, given
f(x), g(x) 6= 0 ∈ F [x], there exist q(x), r(x) ∈ F [x] such that f(x) =
g(x)q(x) + r(x) with either r(x) = 0 or deg(r(x)) < deg(g(x)). (This
shows that F [x] is an Euclidean domain (E.D.).)

With this properties, one can show that every ideal is of the form
(f(x)), i.e. F [x] is a principal ideal domain (PID). For a given ideal
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I C F [x], this can be achieved by pick f(x) ∈ I of minimal degree.
For any g(x) ∈ I, performing the division algorithm, one sees that
r(x) = 0 for otherwise one gets a polynomial of even smaller degree,
which is absurd.

One method is to show that (p(x))lhdF [x] is a maximal ideal. Sup-
pose we have (p(x)) < m � F [x]. Since m = (f(x)), it follows that
p(x) ∈ (f(x)) and thus p(x) = f(x)g(x). p(x) is irreducible implies
that f(x) = cp(x) for some c ∈ F . Anyway, (p(x)) = (f(x)).

Or explicitly, a non-zero element in F [x]/(p(x)) is of the form f(x)
for some f(x) ∈ F [x] and f(x) 6∈ (p(x)). Thus (f(x), p(x)) = 1. By
the division algorithm, there exists s(x), t(x) such that 1 = s(x)f(x) +

t(x)p(x). Hence f(x)s(x) = 1.
If n = deg(p(x)), then the element in the field F [x]/(p(x)) can be

written as {a0 + a1x̄ + ...an−1x̄
n−1}. ¤

Before we move on, we need the following facts.

Proposition 3.1.5. Let f(x) ∈ F [x] be a polynomial of degree n, then
there are at most n roots in F .

Proof. a is said to be a root of f(x) if f(a) = 0. Note that, by division
algorithm, f(x) = q(x)(x−a)+ r(x) with r(x) = 0 or deg(r(x)) = 0. a
is a root if and only if r(x) = 0 if and only if (x− a)|f(x). Inductively
and by the unique factorization of F [x]. One sees that there are at
most n roots. ¤

Proposition 3.1.6. Let G < F ∗ be a finite group. Then G is cyclic.

Proof. By Corollary 2.7.8, G ∼= Zm1⊕ ...⊕Zmd
. Note that, on the right

hand side, mdx = 0 for all x. Thus amd = 1 for all a ∈ G. ( On G, we
use multiplicative notations, while right hand side is additive). Thus
every element in G is a root of xmd − 1. So we have

|G| = m1...md ≤ md.

This is possible only when d = 1. ¤

3.2. field extensions. Let K be a subfield of F , then we say that F
is an extension over K and denote it by F/K. Recall that F can be
viewed as a vector space over K. We say that the extension F/K is
finite of infinite according the dimension of F as a vector space over
K.

Let F/K be an extension, an element u ∈ F is said to be algebraic
over K if there is a non-zero polynomial f(x) ∈ K[x] such that f(u) =
0. In other words, the ring homomorphism

ϕ : K[x] → F,

f(x) 7→ f(u)



31

has a non-zero kernel. Let I be the kernel. Since K[x] is a PID,
I = (p(x)) for some p(x). Let K[u] be the image of ϕ, then

K[x]/(p(x)) ∼= K[u] ⊂ F.

It’s easy that (p(x)) is a prime ideal, that is, p(x) is irreducible. We
may assume that p(x) has leading coefficient 1. Such p(x) is called the
minimal polynomial of u over K.

We say that F/K is algebraic if every element of F is algebraic over
K.

Let’s recall some more properties. If F/K, then we denote [F : K]
to be the dimension dimKF .

Proposition 3.2.1. If E/F and F/K, then [E : F ][F : K] = [E : K].

Sketch of the proof. Let {ui}i∈I be a basis of E/F and {vj}j∈J be a
basis of F/K. Then one can prove that {uivj}(i,j)∈I×J is a basis of
E/K. Hence

[E : K] = |I × J | = |I| · |J | = [E : F ] · [F : K].

¤
Proposition 3.2.2. Suppose that we have a tower of fields K ⊂ F ⊂
E. Then E is finite over K if and only if E is finite over F and F is
finite over K.

Proof. Easy corollary of the previous proposition. ¤
Proposition 3.2.3. If F/K is finite, then F/K is algebraic.

Proof. suppose that [F : K] = n. For any u 6= 0 ∈ F , then {1, u, ..., un}
is linearly dependent over K. Thus there are a0, ..., an ∈ K non all
zero such that

∑n
i=0 aiu

i = 0. It follows that u satisfies the polynomial
f(x) =

∑n
i=0 aix

i ∈ K[x]. ¤
Let F/K be an extension, and u ∈ F . We denote by K(u) the

smallest subfield of F containing K and u. It’s easy to see that

K(u) = {f(u)

g(u)
|f(x), g(x) ∈ K[x], g(u) 6= 0}.

Similarly, for S ⊂ F , we denote by K(S) the smallest subfield contain-
ing both K and S. If F = K(S) for a finite set S, then F is said to be
finitely generated over K.

Proposition 3.2.4. Let F/K be an extension. Then u ∈ F is algebraic
over K if and only if K(u) = K[u]. And in the algebraic case, [K[u] :
K] = deg(p(x)), where p(x) is the minimal polynomial.

Sketch of the proof. If u ∈ F is algebraic over K, let p(x) be the min-
imal polynomial. One sees that g(u) 6= 0 if and only (g(x), p(x)) = 1.
There are s(x), t(x) such that

1 = s(x)g(x) + t(x)p(x),
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hence 1 = s(u)g(u). One has f(u)
g(u)

= f(u)s(u) and hence K(u) ⊂ K[u].

Conversely, 1
u
∈ K(u) = K[u]. Thus 1

u
= f(u) for some f(x) ∈ K[x].

One sees that u satisfies xf(x)− 1. ¤
Proposition 3.2.5. F/K is finite if and only if F/K is finitely gen-
erated and algebraic.

Sketch of the proof. If F/K is finite, let {u1, ..., un} be a basis of F/K,
then F = K(u1, ..., un) hence is finitely generated.

Conversely, suppose that F = K(u1, ..., un) is algebraic over K. In
particular, each ui is algebraic over K. In particular, u1 is algebraic
over K, u2 is algebraic over K(u1), and so on. Then one has that

[K(u1, ..., un) : K] = [K(u1, ..., un) : K(u1, ..., un−1)]·[K(u1, ..., un−1) : K]

is finite by induction. ¤
Proposition 3.2.6. Suppose that we have a tower of fields K ⊂ F ⊂
E. Then E is algebraic over K if and only if E is algebraic over F
and F is algebraic over K.

Sketch of the proof. We will only prove that E is algebraic over F and
F is algebraic over K implies that E is algebraic over K. The remaining
statement are easy.

Pick any u ∈ E. Since u is algebraic over F , let f(x) =
∑

aix
i be

the minimal polynomial of u over F .
We then consider the field F ′ := K(a0, ..., an). It’s clear that u

satisfies a polynomial f(x) ∈ F ′[x]. It follows that u ∈ F ′(u) which is
finite over K. Therefore, u is algebraic over K. ¤

Let L/K and M/K are extensions over K and both L,M are con-
tained in a field F . We denote by LM the smallest subfield containing
both L and M . LM is called the compositum of L and M .

A useful remark is that if L = K(S) for some S ⊂ L, then LM =
M(S).

For a certain property of field extension, denoted C, we are interested
whether C is preserved after extension, lifting or compositum. More
precisely, we would like to know a property C satisfying the following
conditions:

(1) (extension) Both E/F and F/K are C if and only if E/K is C.
(2) (lifting/ base change) If E/K is C, then EF/F is C.
(3) (compositum) If both E/K,F/K are C, then EF/K is C.

Proposition 3.2.7. The property of being finite or algebraic satisfying
the above three.

Sketch of the proof. It’s easy to that being finite and finitely generated
satisfies the above three statement. Hence so does being algebraic. ¤
Theorem 3.2.8. Let F be an extension over K, and E the set of all
elements in F which is algebraic over K. Then E is a field.
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Proof. If u, v ∈ E, we need to show that u + v, uv ∈ E. Note that
u + v, uv ∈ K(u, v) and K(u, v)/K is finitely generated and algebraic,
hence finite. It follows that both u + v, uv are algebraic over K. ¤
Example 3.2.9.

Consider C/Q. A number u ∈ C which is algebraic over Q is called
an algebraic number. The set of all algebraic numbers, denoted A, is
a field, algebraic but not finite over Q.
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3.3. irreducibility. One of the most important construction of field
extension comes from the extension of the form K[x]/(p(x)) with p(x)
an irreducible polynomial. It is therefore natural to give some criterion
for irreducibility of polynomials.

Theorem 3.3.1 (Gauss’ Lemma). Let D be a UFD, and K be its field
of quotients. Given a polynomial f(x) ∈ D[x]. Then f(x) is irreducible
in D[x] if and only if f(x) is irreducible in K[x].

Sketch. 1. f(x) is irreducible in K[x] then f(x) is irreducible in D[x].
2. Given an irreducible f(x) ∈ D[x]. We may assume that f(x) is
primitive, that is, the g.c.d of coefficient is 1. If f(x) = g(x)h(x) ∈
K[x], by clearing the denominators, we have af(x) = (bg(x))(ch(x))
with a, b, c ∈ K and af(x), bg(x), cf(x) ∈ D[x] being primitive.

The main ingredient is:
3. In D[x], if s[x], t[x] are primitive, then so is s[x]t[x].

To see this, suppose that d 6= 1 is the g.c.d of coefficient of s[x]t[x].
Let p be a prime factor of d. We consider the ring homomorphism
− : D[x] → D/(p)[x]. Then

0 = s[x]t[x] = (s[x])(t[x]) 6= 0.

4. It follows that af(x) ∈ D[x] is also primitive. Write a = q
p

with

(p, q) = 1. It follows that p|(qa0, ..., qan) = q, where ai are coefficients
of f(x). This is the required contradiction. ¤

The following observation is easy but useful:

Proposition 3.3.2. Let f(x) ∈ D[x] be a monic polynomial, p C d be

a prime ideal. We consider − : D[x] → D/p[x]. If f(x) is irreducible
in D/p[x], then f(x) is irreducible in D[x].

Example 3.3.3.

Given f(x) = x2 +517x+65535 ∈ Z[x], we may consider − : Z[x] →
Z2[x]. Then f(x) = x2 + x + 1 is irreducible in Z2[x], hence irreducible
in Z[x]. By Gauss’ Lemma, it’s also irreducible in Q[x]. ¤

We also recall

Proposition 3.3.4 (Eisenstein’s criterion). Let f(x) = anxn+...+a0 ∈
Z[x]. If there is a prime p such that p - an, p|an−1, ..., p|a0, and p2 - a0.
Then f(x) is irreducible.

Proof. If f(x) = g(x)h(x), then we consider − : Z[x] → Zp[x]. Thus

anxn = f(x) = g(x)h(x).

It follows that both g(x), h(x) are of the form αxm ∈ Zp[x] with m ≥ 1.
Therefore, we may write g(x) = bmxm + ... + b0,f(x) = ckx

k + ... + c0

with p|b0, p|c0. Then p2|b0c0 = a0, a contradiction. ¤
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3.4. algebraic closed fields and algebraic closure. In this section,
we are going to prove the existence and uniqueness of algebraic closure.
As a consequence, we are able to show the existence and uniqueness of
splitting fields.

To motivate the study of algebraic closure, we start with examples:

Example 3.4.1.

Consider Q[ 3
√

2]/Q and Q[ 3
√

2ω]/Q. There is a isomorphism ϕ :
Q[ 3
√

2] → Q[ 3
√

2ω] with ϕ( 3
√

2) = 3
√

2ω, and ϕ(a) = a for a ∈ Q.
This follows from the natural isomorphism Q[x]/(x3 − 2) → Q[ 3

√
2]

and Q[x]/(x3 − 2) → Q[ 3
√

2ω]. ¤
In general, given a extension F/K, if u, v ∈ F are two roots of an

irreducible polynomial p(x) ∈ K[x], then K[u] ∼= K[v]. Therefore,
starting with a field K and an irreducible polynomial p(x) ∈ K[x].
It’s convenient that we have a field F containing all roots of p(x) in
advance. Or even more, we would like to have a field containing all
roots of all polynomial in K[x].

Proposition 3.4.2. Let F be a field. The following are equivalent:

(1) Every polynomial of F [x] of degree ≥ 1 has a root in F .
(2) Every polynomial of F [x] of degree ≥ 1 has all the roots in F .
(3) Every irreducible polynomial in F [x] has degree ≤ 1
(4) If E is an algebraic extension over F , then E = F .
(5) There is a subfield K ⊂ F such that F is algebraic over K and

every polynomial in K[x] splits in F [x].

Definition 3.4.3. A field F satisfying above conditions is said to be
algebraically closed.

Sketch. (1) ⇒ (2) by induction on degree. And hence (1) ⇔ (2) are
equivalent. It’s easy to see that (2) ⇔ (3). We now look at (3) and
(4). If E is an algebraic extension. Pick u ∈ E algebraic over F
with minimal polynomial p(x). By (3), p(x) has degree 1, hence [E :
F ] = deg(p(x)) = 1. In particular, E = F . Conversely, if there is an
irreducible polynomial p(x) of degree > 1, then K[x]/(p(x)) gives an
algebraic extension of degree deg(p(x)). This leads to a contradiction,
hence (4) implies (3).

Lastly, it’s clear that (3) implies (5) by picking K = F . We now
prove that (5) ⇒ (4). Let E be an algebraic extension over F . For
any u ∈ E, u is algebraic over K as well. Let pF (x), pK(x) be the
minimal polynomial of u over F,K respectively. By viewing pK(x) as
a polynomial in F , then one has pF (x)|pK(x) ∈ F [x]. However, pK(x)
splits in F [x]. It follows that pF (x) has degree 1. And hence u ∈ F .
Thus E = F . ¤

We can also define the notion of algebraic closure.
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Proposition 3.4.4. Let F/K be an extension. The following are equiv-
alent.

(1) F/K is algebraic, and F is algebraically closed.
(2) F/K is algebraic, and every polynomial in K[x] splits in F [x].
(3) F is a splitting field of all polynomials of K.

Proof. The proof is an easy consequence of the Proposition 3.4.2, we
leave it to the readers. ¤
Definition 3.4.5. F is said to be an algebraical closure of K if F/K
satisfies the above conditions.

Theorem 3.4.6. Algebraic closure exists.

The following is due to M. Artin as it appeared in [Lang, Algebra].

Proof. Let K be a field.
Step 1. There is an extension E1 over K such that every polynomial

of degree ≥ 1 has a root in E1.
To this end, let S be the set of all polynomials of degree ≥ 1. We

consider K[S] to be the polynomial ring with indeterminates xf , for
f ∈ S. Consider now an ideal I =< f(xf ) >f∈S. We claim that
I 6= K[S], hence I ⊂ m for some maximal ideal m. The field K[S]/m
gives an extension E1 over K. Now, for every f(x) ∈ K[x], one sees

that f(xf ) = f(xf ) = 0 ∈ E. Hence f(x) has a root xf in E1.
It remains to show that I 6= K[S]. Suppose on the contrary that

I = K[S], in particular, 1 ∈ I. We may write

1 =
r∑

i=1

g(X)fi(xfi
).

One can construct an algebraic extension F/K such that each fi has a
root ui in F . Substitute xfi

by ui in F , one has

1 =
r∑

i=1

g(X)fi(ui) = 0 ∈ F,

which is the required contradiction.
Step 2. Inductively, one has K = E0 ⊂ E1 ⊂ E2.... Let E = ∪Ei,

then E is a field extension over K. And E is algebraically closed.
To see this, for any polynomial f(x) =

∑
aix

i ∈ E[x], ai ∈ Eji

for some ji. One can pick J maximal among ji so that ai ∈ EJ for
all i. Hence f(x) ∈ EJ . By construction, f(x) has a root in EJ+1,
and inductively, f(x) has all its root in EJ+d, where d = deg(f(x)).
Therefore, f(x) has all its root in E.

Step 3. Let Ea := {u ∈ E|u is algebraic over K}. Then Ea is an
algebraic closure of K.

It’s an easy exercise to check that Ea is a field extension over K.
We leave it to the readers. It’s also clear that Ea is algebraic over K.
Hence, it suffices to check that Ea is algebraically closed.
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To see this, one notices that every polynomial of K[x] splits in E
and it follows that every root of K[x] is in Ea. Therefore, one has that
every polynomial of K[x] splits in Ea and we are done. ¤
Remark 3.4.7. An algebraically closed field must be infinite.
Suppose that F is algebraically closed and F = {a1, .., an 6= 0}. We
consider f(x) :=

∏
(x − ai) + an. Then f(x) has no root in F , a

contradiction.

We next work on the uniqueness of algebraic closure. The main
ingredient is the following extension theorem.

Theorem 3.4.8 (Extension theorem). Let σ : K → L be an embedding
to an algebraically closed field L. Let E/K be an algebraic extension.
Then one can extend the embedding σ to an embedding σ̄ : E → L.
That is, there is an embedding σ̄ : E → L such that σ̄|K = σ.

We remark that L is not necessarily an algebraic closure of K. For
example, L could be something like K(x), an algebraic closure of K(x).

In order to prove the uniqueness, we need the following useful Lemma.

Lemma 3.4.9. Let E/K be an algebraic extension and σ : E → E be
an embedding such that σ|K = 1K. Then σ is an isomorphism.

Proof. If E/K is finite, then injective implies isomorphic in the case of
finite dimensional vector space.

In general, let’s pick any u ∈ E. It suffices to show that u is in the
image of σ. To see this, let p(x) be the minimal polynomial of u over K
and u = u1, u2, ..., ur be the roots of p(x) in E. Let E ′ := K(u1, ..., ur).
It’s clear that for each i, σ(ui) = uj for some j. Hence σ|E′ gives an
homomorphism from E ′ to E ′.

Now σ|E′ : E ′ → E ′ is an injective homomorphism of finite dimen-
sional vector space E ′/K. Therefore, σ|E′ is an isomorphism. In par-
ticular, u is in the image of σ|E′ and therefore in the image of σ. ¤
Sketch of the theorem. The staring point is an extension to a simple
extension. More precisely, let u ∈ E be algebraic over K with minimal
polynomial p(x). Then pσ(x) is an irreducible polynomial in σ(K)[x].
In L, Pick any root v of pσ(x) in σ(K)[x]. This is possible since L is
algebraically closed. One claims that there is an isomorphism ( hence
an embedding to L)

σ̄ : K(u) → σ(K)(v) ⊂ L

extending σ. We leave the detail to the readers.
In order to work on the general case, we apply Zorn’s Lemma to the

non-empty P.O. set of fields

S := {(F, τ)|K ⊂ F ⊂ E, τ : F → L, τ |K = σ}.
The ordering is given naturally as: (F1, τ1) ≤ (F2, τ2) if F1 ⊂ F2 and
τ1 = τ2|F1 .
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By Zorn’s Lemma, there is a maximal element, say Em. It’s easy to
see that Em = E. Otherwise, pick any u ∈ E, which is algebraic over
K and hence over Em. There is an extension to Em(u) as we have seen
in the first paragraph. This is a contradiction to the maximality of Em.
Hence Em = E. ¤
Lemma 3.4.10. Let E/K be an algebraic extension and σ : E → E
be an embedding such that σ|K = 1K. Then σ is an isomorphism.

Proof. If E/K is finite, then injective implies isomorphic in the case of
finite dimensional vector space.

In general, let’s pick any u ∈ E. It suffices to show that u is in the
image of σ. To see this, let p(x) be the minimal polynomial of u over K
and u = u1, u2, ..., ur be the roots of p(x) in E. Let E ′ := K(u1, ..., ur).
It’s clear that for each i, σ(ui) = uj for some j. Hence σ|E′ gives an
homomorphism from E ′ to E ′.

Now σ|E′ : E ′ → E ′ is an injective homomorphism of finite dimen-
sional vector space E ′/K. Therefore, σ|E′ is an isomorphism. In par-
ticular, u is in the image of σ|E′ and therefore in the image of σ. ¤
Corollary 3.4.11. Algebraic closure of a field is unique up to isomor-
phism.

Proof. Suppose that E, F are algebraic closure of K. By the extension
theorem, there are embedding σ : E → F and τ : F → E such that
σ|K = τ |K = 1K .

Hence one has an embedding σ◦τ : F → F , which is an isomorphism
by the Lemma. Similarly, τ ◦σ is an isomorphism. Hence E and F are
isomorphic. ¤
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3.5. splitting fields and normal extensions. We have seen that
given a field K, there is a unique (up to isomorphism) algebraic closure,
denoted K. Then it is convenient for our further study of roots of
polynomial. Even though we do not know the roots explicitly, we know
that there are in its algebraic closure. This make the discussion of root
of polynomials more concrete.

Let K be a field and f(x) ∈ K[x]. Let {u1, ..., ur} be the roots of
f(x) in its algebraic closure K. Then the field K(u1, ..., ur) is called
the splitting field of f(x) over K. The splitting field is the smallest
field that containing all roots.

Given a set of polynomial S ⊂ K[x], we can similarly define the
splitting field of S to be the field generated by all roots of polynomials
in S.

In this section, we are going to prove the existence and uniqueness
of splitting fields. And we introduce the notion of normal extension.

Proposition 3.5.1. Let K be a field. And S be a set of polynomial in
K[x]. Then

(1) Any two splitting field are isomorphic.
(2) If F1, F2 are two splitting fields in a fixed algebraic closure K,

then F1 = F2.

Proof. Let F1 and F2 be two splitting fields, one has an K-embedding
σ : K → F2 = K. This embedding can be extended to σ̃ : F1 → F2

by the extension theorem. One can prove that image of σ̃ is in F2.
Hence one has an injective homomorphism σ̃ : F1 → F2. Similarly
there is another one τ̃ : F2 → F1. It’s easy to show that these give the
isomorphism. ¤
Proposition 3.5.2. Let N be an algebraic extension over K contained
in K. Then the following are equivalent:

(1) Any K-embedding σ : N → K induces an K-automorphism of
N .

(2) N is a splitting field of some S ⊂ K[x] over K.
(3) Every irreducible polynomial in K[x] having a root in N splits

in N .

Proof. For (1) ⇒ (2), (3), we prove that for every u ∈ N , with minimal
polynomial p(x), then v ∈ N for every root of p(x). To this end, start
with an isomorphism σ : K(u) → K(v). By extension theorem, one

can extend it to an embedding N → K(v) = K. The embedding is an
automorphism by (1). Thus, v = σ(u) ∈ N .

(3) ⇒ (2) is trivial.
For (2) ⇒ (1). Suppose that N is a splitting field of S over K. Let u

be a root of f(x) ∈ S. Let σ : N → K be any K-embedding. It’s clear
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that σ(u) is a root of f(x), hence σ(u) ∈ N . Thus σ(N) ⊂ N . Since σ
is injective and N/K is algebraic, σ is in fact an isomorphism. ¤

The property of being normal is not as well-behaved as begin alge-
braic or finite. For example, it’s not preserve after ”extension”

Example 3.5.3. If F/E and E/K are normal, then F/K is not nec-
essarily normal. For example, take F = Q( 4

√
2), E = Q(

√
2), K = Q.

It’s easy to see that a degree 2 extension is always normal, however,
Q( 4
√

2) is not normal over Q.
Also let’s consider K ⊂ E ⊂ F . Then F is normal over K implies

that F is normal over E. But it doesn’t imply that E is normal over
K. For example, take F = Q( 4

√
2, i), E = Q( 4

√
2), K = Q

Being normal is preserved by ”lifting” and ”compositum”

Proposition 3.5.4. Let E, F be extensions over K and contained in
a field L. If E/K is normal then EF/F is normal. Moreover, if both
E/K, F/K are normal, then EF/K is normal.

Proof. In order to show that EF is normal over F , we look at F -
embedding σ : EF → F . Since σ is identity on F , hence on K. By the
extension theorem and the proof of the previous Proposition, one can
show that σ|E is an automorphism. Hence σ(E) = E. It follows that

σ(EF ) = σ(E)F = EF.

Thus EF is normal over F .
Suppose now that E/K, F/K are normal. Let σ : EF → K be a

K-embedding. We have that σ|E, σ|F are K-embeddings. One sees that
σ(E) = E and σ(F ) = F by the normal assumption. If follows that

σ(EF ) = σ(E)σ(F ) = EF.

¤
3.6. finite dimensional Galois extension. In this section, we are
going to prove the fundamental theorem for finite dimensional Galois
extension.

Let F/K be an field extension, we define the Galois group of F over
K, denoted GalF/K or GF/K or AutK(F ), as

GalF/K := {σ|σ ∈ AutF, σ|K = 1K}.
It’s clear that for σ ∈ GalF/K and u ∈ F algebraic over K with mini-

mal polynomial p(x), then σ(u) satisfies the same minimal polynomial.
On the other hand, if F/K is normal, let u, v be two elements having

the same minimal polynomial p(x), then we claim that there is an
σ ∈ GalF/K such that σ(u) = v. To see this, we fix an algebraic closure

K containing F . There is an K-isomorphism σ0 : K(u) → K(v) which
extends to an embedding σ : F → K . Since F is normal over K, one
has σ(F ) ⊂ F . And hence σ ∈ AutF .
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Example 3.6.1.

Consider the field F := Q( 3
√

2, ω) which is a splitting field of x3 − 2
over Q. Thus it’s normal over Q. One can check that the Galois
group GalF/Q is generated by σ, τ that σ( 3

√
2) = 3

√
2ω, σ(ω) = ω, and

τ( 3
√

2) = 3
√

2, τ(ω) = ω2. It’s easy to check that GalF/Q ∼= S3. ¤
Example 3.6.2.

Consider the field F := Q( 3
√

2) over Q. Then it’s easy to check that
GalF/Q = {1F}. ¤

There is a natural correspondence between subgroups of Galois groups
and intermediate fields. To be precise, fix an extension F/K. Let
H < G := GalF/K be a subgroup. One can define

H ′ := {u ∈ F |σ(u) = u, ∀σ ∈ H}.
It’s clear that this is a field. On the other hand, given and intermediate
field L such that K ⊂ L ⊂ F , then one can define

L′ := {σ ∈ GalF/K |σ(u) = u, ∀u ∈ L} = {σ ∈ GalF/K |σ|L = 1L}.
It’s easy to check the following properties:

Proposition 3.6.3. Let F/K be an extension with Galois group G.
Let L be an intermediate field, i.e. K ⊂ L ⊂ F , and H < G is a
subgroup.

(1) F ′ = {1F}, K ′ = G, and {1F}′ = F .
(2) For any L, one has L ⊂ L′′, L′ = L′′′.
(3) For any H, one has H < H ′′, H ′ = H ′′′.
(4) For any intermediate fields L ⊂ M , one has M ′ < L′.
(5) For any subgroups J < H, one has H ′ ⊂ J ′.

Proof. Most of the proof follows directly from the definition. We only
sketch the proof for L′ = L′′′.

By L ⊂ L′′ and (4), one has

(L′′)
′
< L′.

On the other hand, by (5), one has

L′ < (L′)
′′
.

We are done. ¤
Proposition 3.6.4. There is a one-to-one correspondence between

{L|K ⊂ L ⊂ F,L′′ = L} ↔ {H|H < G,H ′′ = H}.
Proof. The correspondence is given by L 7→ L′ (or H 7→ H ′).

To show the injective, one sees that if L′1 = L′2, then L1 = L′′1 =
L′′2 = L2.

For any H with H ′′ = H, we take L = H ′, then H = L′. It suffices
to check that L′′ = L. This follows from the fact that H ′′′ = H ′. ¤
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In the proposition, one might expect that G′ = K. However, this is
not always the case (see e.g. Example 3.6.2). For extension with this
property, we call it Galois. It turns out that this naive definition is a
very delicate one which leads to some nice properties.

Definition 3.6.5. An extension F/K is said to be Galois if (GalF/K)′ =
K.

Example 3.6.6.

Keep the notation as in Example 3.6.1. One can check that G′ = Q,
hence a Galois extension.

In fact the group G has the following subgroups: {1}, < τ >,< τσ >
,< τσ2 >,< σ >,G of order 1, 2, 2, 2, 3, 6 respectively. Their fixed fields
are Q( 3

√
2, ω),Q( 3

√
2),Q( 3

√
2ω),Q( 3

√
2ω2),Q(ω),Q respectively.

Conversely, for these intermediate subfields, their fixed groups are
exactly those corresponding ones. ¤

In general, we have the following:

Theorem 3.6.7 (Fundamental theorem of finite dimensional Galois
extension). Let F/K be a finite dimensional Galois extension with Ga-
lois group G, then

(1) There is an one-to-one correspondence between

{L|K ⊂ L ⊂ F} ↔ {H|H < G}.
(2) The corresponding degree are equal. That is, if K ⊂ L ⊂ M ⊂

F , then [M : L] = [L′ : M ′]. And if J < H < G, then [H : J ] =
[J ′ : H ′].

(3) An intermediate field E is Galois over K if and only if E ′ CG.
And in this case, GalE/K

∼= G/E ′.

Proof. Step 1. [M : L] ≥ [L′ : M ′].
We prove the case that M = L(u) for some u ∈ M and by induction
on [M : L], we are done. Suppose now that M = L(u) and let p(x) be
the minimal polynomial of u over L. Let S be the set of roots of p(x)
in F . Then one has a map

Φ : L′ → S,

σ 7→ σ(u).

One can check that Φ induces an injective map L′/M ′ → S. Hence one
has

[L′ : M ′] = |L′/M ′| ≤ |S| ≤ deg(p(x)) = [M : L].

Step 2. [H : J ] ≥ [J ′ : H ′].
Let n = [H : J ]. Suppose on the contrary that there are n+1 elements
u1, ..., un+1 ∈ J ′ linearly independent over H ′.
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We consider the equation
∑n+1

i=1 uixi = 0 in F Consider now a set of
representative of H/J , denoted {e = σ1, ..., σn}. By applying σi to the
above equation. Then one has a system of linear equations in F .

(∗)





σ1(u1)x1 + σ1(u2)x2 + ... + σ1(un+1)xn+1 = 0
σ2(u1)x1 + σ2(u2)x2 + ... + σ2(un+1)xn+1 = 0
...
σn(u1)x1 + σn(u2)x2 + ... + σn(un+1)xn+1 = 0

Pick a solution in F with smallest number of non-zero ai’s, may
assume it’s (a1, ..., as, 0..., 0) and a1 = 1.

If there is an τ ∈ H such that τ(a2) 6= a2, then by applying τ to
the system (∗), one get the same system of equations with a solution
(τ(a1), τ(a2), ..., τ(as), 0, ..., 0 . Hence

(a1, ..., as, 0..., 0)− (τ(a1), τ(a2), ..., τ(as), 0, ..., 0) = (0, a2− τ(a2), ..., 0)

is a non-zero solution of smaller length. This is the required contradic-
tion.

To find τ . We look at u1a1 + ... + usas = 0. Since {u1, ..., us} is
independent over H ′, not all a1 is in H ′. We may assume that a2 6∈ H ′.
Hence there is a τ ∈ H such that τ(a2) 6= a2. We are done.

Step 3. We show that every intermediate field L, L′′ = L. And
every subgroup H < G, H ′′ = H.

By Step 1, one has

[L′′ : K] = [L′′ : K ′′] ≤ [K ′ : L′] ≤ [L : K],

however, one has L ⊂ L′′. Thus one has L = L′′. Similarly, one can
prove that H ′′ = H by considering [H ′′ : {1F}].

Step 4. [M : L] = [L′ : M ′] and [H : J ] = [J ′ : H ′].
This follows from [M : L] = [M : K]/[L : K] = [K ′ : M ′]/[K ′ : L′] =

[L′ : M ′]. And the other one is similar.
Step 5. F/K is normal and separable.
Given u ∈ F , with minimal polynomial p(x) over K. As in the proof

of Step 1. One has [K(u)′ : K ′] ≤ |S| ≤ deg(p(x)) = [K(u) : K]. By
Step 4, they are equalities. In particular, every root of p(x) is in F and
there is no multiple roots. Thus F is normal and separable over K.

Step 6. If N C G, then N ′ is stable. That is, for all σ ∈ G,
σ(N ′) ⊂ N ′ (indeed = N ′).

Since N C G, for all σ ∈ G and for all τ ∈ N , one has σ−1τσ ∈ N .
Thus, σ−1τσ(N ′) = N ′. It follows that τσ(N ′) = σ(N ′), for all τ ∈ N .
Hence σ(N ′) is fixed by all N and thus σ(N ′) ⊂ N ′.

Step 7. If E is a stable intermediate subfield. Then the restriction
map GalF/K → GalE/K is well-defined and surjective.

Since E is stable, then σ|E ∈ GalE/K for any σ ∈ GalF/K . Moreover,
let τ ∈ GalE/K , by the extension theorem, there is an extension τ :

F → K. Since F is normal over K, τ is in fact an automorphism of F .
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Step 8. If an intermediate field E is stable, then E/K is Galois.
To see this, it suffices to show that for any u ∈ E−K, there is an σ ∈

GalE/K such that σ(u) 6= u. Fix any F 3 v 6= u with the same minimal
polynomial as u. There is an K-isomorphism σ0 : K(u) → K(v) such
that σ(u) = v. σ can be extended to an embedding σ : F → K,
which gives an automorphism of F . The restriction σ = σ|E gives an
automorphism of E that σ(u) 6= u.

Step 9. If E/K is Galois, then E is stable.
One first notices that E/K is normal. For every σ ∈ GalF/K , σ

gives an embedding σ|E : E → K. Since E/K is normal, σ|E is an
automorphism of E. And hence E is stable under the Galois group
GalF/K action.

Step 10. If E is stable, then E ′ is normal.
This can be checked directly. For all σ ∈ G and τ ∈ E ′ and for all

u ∈ E,
σ−1τσ(u) = σ−1τ(σ(u)) = σ−1σ(u) = u,

since σ(u) ∈ E. Therefore, σ−1τσ ∈ E ′. ¤
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Remark 3.6.8. Some of the result we proved still true in a more gen-
eral setting. We list some here:

(1) If F/K is an extension, and an intermediate field E is stable,
then E ′ C GalF/K.

(2) Let F/K be an extension. If N C GalF/K, then H ′ is stable.
(3) If F/K is Galois, and E is a stable intermediate field, then E is

Galois over K. (finite-dimensional assumption is unnecessary
here)

(4) An intermediate field E is algebraic and Galois over K, then E
is stable.

We conclude this section with the following theorem concerning the
relation between Galois extension, normal extension and splitting fields.

Definition 3.6.9. An irreducible polynomial f(x) ∈ K[x] is said to be
separable if its roots are all distinct in K.

Let F be an extension over K and u ∈ F is algebraic over K. Then
u is separable over K if its minimal polynomial is separable.

An extesnion F over K is separable if every element of F is separable
over K.

Theorem 3.6.10. Let F/K be an extension, then the following are
equivalent

(1) F is algebraic and Galois over K.
(2) F is separable over K and F is a splitting field over K of a set

S of polynomials.
(3) F is a splitting field of separable polynomials in K[X].
(4) F/K is normal and separable.

Proof. Fix u ∈ F with minimal polynomail p(x) over K. Let {u =
u1, ..., ur} be distinct roots of p(x) in F . For any σ, then σ permutes
{u = u1, ..., ur}. Thus f(x) :=

∏r
i=1(x − ui) is invariant under σ.

Hence f(x) ∈ K[x]. It follows that f(x) = p(x). This proved that
(1) ⇒ (2), (3), (4).

One notices that (2) ⇔ (4). Thus it remains to show that (2) ⇒ (3),
and (3) ⇒ (1).

For (2) ⇒ (3), let f(x) ∈ S and let g(x) be an monic irreducible
component of f(x). Since f(x) splits in F , it’s clear that g(x) is an
minimal polynomial of some element in F . Moreover, since F/K is
separable, g(x) is separable. One sees that F is in fact a splitting field
of such g(x)’s.

For (3) ⇒ (1), we first note that F/K is algebraic since F is a split-
ting field. We shall prove that (4) ⇒ (1). The implication (3) → (4)
follows from a general fact about separable extension that an algebraic
extension F/K is separable if F is generated by separable elements.
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To this end, pick any u ∈ F −K, with minimal polynomial p(x) of
degree ≥ 2 and separable. Hence there is a different root, say v, of p(x)
in F . It’s natural to consider the K-isomorphism σ : K(u) → K(v).
Which can be extended to σ̄ : F → K. Since F is normal, σ̄ is an
automorphism of F , hence in GalF/K sending u to v 6= u. So F/K is
Galois.

¤
3.7. Galois group of a polynomial. In this section, we are going
to study Galois group of a polynomial. We will define this notion in
general and study polynomial of degree 3,4 in more detail.

Definition 3.7.1. Let f ∈ K[x] be a polynomial with splitting field F .
The Galois group of f(x), denoted Gf is the Galois group of F/K.

The Galois group of a polynomial have some basic properties.

Proposition 3.7.2. Let f(x) be a polynomial of degree n, then Gf ↪→
Sn. Thus one can viewed Gf as a subgroup of Sn.

If f(x) is irreducible and separable, then Gf is transitive and |Gf | is
divided by n.

Sketch of the proof. Let {u1, ..., ur} be roots of f(x) in F . For σ ∈ Gf ,
σ(ui) = uj. Hence σ gives a permutation of r elements. It follows that
Gf can be viewed as a subgroup of Sr hence Sn.

(r could possibly less than n because there might have multiple roots
in general).

Now if f(x) is separable. Then we have distinct roots {u1, ..., un} in
F . For any ui, we have K[ui] ∼= K[x]/(f(x)) since f(x) is irreducible.
If follows that there is a K-isomorphism σ : K[ui] → K[x]/(f(x)) →
K[uj] for all i, j. sigma gives an K-embedding K[ui] → K[uj] = K and
extended to a K-embedding σ̄ : F → K. Since F is normal, σ̄(F ) = F
(cf. Theorem ?). Thus σ̄ ∈ Gf and σ̄(ui) = σ(ui) = uj. Therefore, Gf

is transitive.
Moreover, since K ⊂ K[ui] ⊂ F . So |Gf | = [F : K] = [F : K[ui]]n

is divided by n. ¤
So now, we discuss irreducible separable polynomials of small degree.

One might wondering how do we know a polynomial is separable or not.
We have the following easy criteria:

Proposition 3.7.3. Let f(x) ∈ K[x] be an irreducible polynomial The
following are equivalent:
1. f(x) is separable.
2. (f(x), f ′(x)) = 1 in K[x]
3. (f(x), f ′(x)) = 1 in K[x]
4. f ′(x) 6= 0

Recall that when f(x) =
∑

aix
i, then f ′(x) is its formal differentia-

tion which is f ′(x) :=
∑

iaix
i−1.
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Proof. If f(x) is separable, then f(x) =
∏n

i=1(x − ui) with distinct

ui in K[x]. Thus f ′(x) =
∑ Qn

i=1(x−ui)

x−ui
. If (f(x), f ′(x)) 6= 1 in K[x],

then x − ui|f ′(x) for some i. However, f ′(ui) =
∏

j 6=i(uj − ui) 6= 0, a
contradiction.

Conversely, if f(x) is not separable, then f(x) =
∏r

i=1(x−ui)
ai with

some ai ≥ 2. Let’s say a1 ≥ 2. Then it’s clear that (x− u1) is a factor
of f ′(x) as well. Hence (f(x), f ′(x)) 6= 1. This proved the equivalence
of (1) and (2).

To see the equivalence of (2) and (3). Note that if (f(x), f ′(x)) = 1
in K[x], then 1 = f(x)s(x) + f ′(x)t(x) for some s(x), t(x) ∈ K[x].
One can view this in K[x] and thus conclude that (f(x), f ′(x)) = 1
in K[x]. On the other hand, if (f(x), f ′(x)) = d(x) 6= 1 in K[x],
then d(x) = f(x)s(x) + f ′(x)t(x) for some s(x), t(x) ∈ K[x]. One can
view this in K[x] and thus conclude that d(x)|(f(x), f ′(x)) in K[x]. In
particular, (f(x), f ′(x)) 6= 1 in K[x]

Now finally, since f(x) is irreducible, (f(x), f ′(x)) could only be 1 or
f(x). Since f(x)|f ′(x) if and only f ′(x) = 0. Thus we are done. ¤

One notice that if charK 6= 0, then an irreducible polynomial is
always separable. When charK = p, then an irreducible polynomial
f(x) is not separable if and only f(x) = g(xp) for some g(x).

One can go a little bit further. If K is finite field with charK = p.
Let f(x) =

∑
aix

i be an irreducible polynomial. f ′(x) = 0 means that
p|i for all ai 6= 0. Thus f(x) can be rewrite as

∑
aix

ip. Recall that each
ai can be written as bp

i for some bi because K is finite. Thus f(x) =∑
bp
i x

ip = (
∑

bix
i)p. This contradicts to f(x) being irreducible. To

sum up, an irreducible polynomial over a finite field is always separable.
Let’s now turn back to the discussion of Galois groups. If f(x) is

irreducible and separable of degree 2, then Gf
∼= S2

∼= Z2. If f(x) is
irreducible and separable of degree 3, then Gf is a subgroup of S3 of
order divided by 3. Thus Gf could be A3 or S3. The question now is
how to distinguish these two cases.

Lemma 3.7.4. (charK 6= 2) Let f(x) ∈ K[x] be an irreducible and sep-
arable polynomial of degree 3 with splitting field F and roots u1, u2, u3.
Then (Gf ∩ A3) = K[∆], where ∆ := (u1 − u2)(u1 − u3)(u2 − u3)

Note that f(x) is irreducible and separable, then F/K is Galois.
And ∆2 is invariant under Gf . Thus D := ∆2 ∈ K. We call D the
discriminant of f(x).

If f(x) is written as x3 + bx2 + cx + d, then s1 := u1 + u2 + u3 = −b,
s2 := u1u2 + u1u3 + u2u3 = c, s3 := u1u2u3 = −d. We impose an
ordering u1 > u2 > u3. Then leading term of D is u4

1u
2
2, which is the

leading term of s2
1s

2
2. Then we consider D′ := D − s2

1s
2
2 with lower

leading term, which is −4u3
1u

3
2. This leading term is the same as the



48

leading term of −4s3
2. So we consider D(2) := D′ + 4s3

2. Inductively,
one can write D in terms of s1, s2, s3, hence in terms of b, c, d.

If f(x) is normalized as x3 + px + q, then D = −4p3 − 27q2.

Proof. σ(∆) = ∆ if and only σ is an even permutation. So ∆ ∈ (Gf ∩
A3)

′ clearly. Hence we have K[∆] < (Gf ∩ A3)
′. Thus K[∆]′ > (Gf ∩

A3). If σ ∈ K[∆]′, then σ(∆) = ∆, hence σ is even. Thus K[∆]′ <
(Gf ∩A3). So we have K[∆]′ = (Gf ∩A3) and K[∆] = (Gf ∩A3)

′. ¤

We thus conclude that Gf = A3 if and only if Df is square in K.
And Gf = S3 if and only if Df is not a square in K

Example 3.7.5.

Let f(x) = x3 + x + 1 ∈ Q[x]. It’s irreducible.
Now we consider the case of degree 4 polynomial. One can also define

∆ and discriminant D similarly. However, it turns out that this is not
enough to classify all cases. The idea is to consider another normal
subgroup V4 C S4.

Let’s first list at all possible subgroup in S4. Since Gf is transitive
with order divided by 4. We can have following

|Gf | Gf Gf ∩ V4 |Gf |/|Gf ∩ V4|
24 S4 V4 6
12 A4 V4 3
8 ∼= D8 V4 2
4 ∼= Z4 6= V4 2
4 V4 V4 1

Also we have the following

Lemma 3.7.6. Let f(x) be an irreducible separable polynomial of de-
gree 4 with splitting field F and roots u1, K, u4. Let α = u1u2 + u3u4

β = u1u3 + u2u4, γ = u1u4 + u2u3. Then K[α, β, γ] = (Gf ∩ V4).

Let g(x) = (x− α)(x− β)(x− γ), then one can check that σ(g(x) =
g(x) for all σ ∈ Gf . Thus g(x) ∈ K[x] for F/K is Galois. The cubic
g(x) is call the resolvant cubic of f(x). If f(x) = x4+bx3+cx2+dx+e,
then its resolvant cubic is g(x) = x3− cx2 + (bd− 4e)x− b2e + 4ce− d2

by computation on symmetric polynomials as we exhibited.

Proof. It clear that K[α, β, γ] < (Gf ∩V4)
′. Hence we have (Gf ∩V4) <

K[α, β, γ]′. Now if σ ∈ K[α, β, γ]′ and σ 3 V4. We claim that this
would lead to a contradiction. And thus we are done.

The claim can be verified directly by exhausting all cases. For ex-
ample, if σ = (1, 3), then σ(α) = α gives u3u2 + u1u4 = u1u2 + u3u4.
Thus (u2 − u4)(u1 − u3) = 0 contradict to reparability of f(x). The
other cases can be computed similarly.

¤
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Let m := |Gf |/|Gf ∩ V4| = [K[α, β, γ] : K]. By using this correspon-
dence, one sees that:
1. m = 1 ⇔ Gf = V4 ⇔ g(x) splits into linear factors in K[x].
2. m = 3 ⇔ Gf = A4 ⇔ g(x) is irreducible in K[x] and Dg is a square
in K.
3. m = 6 ⇔ Gf = S4 ⇔ g(x) is irreducible in K[x] and Dg is not a
square in K.

The only remaining unclear case is m = 2. This case corresponding
to the case that g(x) splits into a linear and a quadratic factors in K[x].
To see the Galois group, we claim that Gf

∼= D8 if and only if f(x) is
irreducible in K[α, β, γ][x].

First of all, if f(x) is irreducible in K[α, β, γ][x], then

4 = [K[α, β, γ][u1] : K[α, β, γ]] ≤ [F : K[α, β, γ]] = |Gf ∩ V4|.
So Gf

∼= D8.
On the other hand, F is the splitting field of f(x) over K[α, β, γ] as

well. Suppose that f(x) is reducible. If f(x) factors into a linear and a
cubic factor in K[α, β, γ], then the Galois group of f(x) over K[α, β, γ],
which is Gf∩V4, can only ∼= A3 or S3. This is a contradiction. Running
over all cases, one sees that the only possible case is f(x) factors into
two linear and one quadratic factors. Thus |Gf ∩ V4| = 2 and hence
Gf

∼= Z4.
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3.8. finite fields. The Galois theory on finite fields is comparatively
easy and basically governed by Frobenius map.

Recall that given a finite field F of q elements, it’s prime field must
be of the form Fp for some prime p. Let n = [F : Fp], then |F | = pn.

Theorem 3.8.1. F is a finite field with pn elements if and only if F
is a splitting field of xpn − x over Fp.

Sketch. Recall that F ∗ is a multiplicative group of order pn− 1. Hence
it’s easy to see that every element u ∈ F satisfying xpn − x. Thus
element of F are exactly roots of xpn − x, therefore, F is a splitting
field of xpn − x over Fp.

Conversely, if F is a splitting field of xpn − x over Fp. Let E ⊂ F be
the subset of all roots of xpn − x. One can check that E is a subfield
(containing Fp and all roots). By definition of splitting field, E is a
splitting field, and E = F . So |F | = |E| ≤ pn. However, notice that
xpn − x is separable. So |F | = pn. ¤
Proposition 3.8.2. Let F be a finite field and F/K is an extension.
Then F/K is Galois. The Galois group is cyclic, generated by Frobenius
map.

Proof. We shall prove the case that K = Fp. For general K, Fp ⊂ K ⊂
F . Since F/Fp is Galois, then F/K is also Galois with Galois group
K ′ < GalFpF also a cyclic group.

Now we consider F/Fp, and |F | = pn. Since F is a splitting field of
a separable polynomial xpn − x over Fp, F is Galois over Fp.

The Galois group GalFpF has order [F : Fp] = n. Consider the
Frobenius map ϕ : a → ap, which is clearly a Fp-automorphism. So
ϕ ∈ GalFpF . Note that order of ϕ is n. So GalFpF can only be the
cyclic group generated by ϕ. ¤
3.9. cyclotomic extension. We now start the study of cyclotomic
extension.

Definition 3.9.1. A cyclotomic extension of order n over K is a split-
ting field of xn − 1.

Remark 3.9.2. If char(K) = p and n = prm, then xn−1 = (xm−1)pr
.

Hence we may assume that either char(K) = 0 or char(K) = p - n in
the study of cyclotomic extension.

The main theorem is the following:

Theorem 3.9.3. Keep the notation as above. Then we have

(1) F = K(ζ), where ζ is a primitive n-th root of unity.
(2) F/K is Galois whose Galois group GalF/K can be identified as

a subgroup of Z∗n.
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(3) If n is prime, then GalF/K is cyclic. More general, is n = pk

with p 6= 2, then then GalF/K is cyclic.

Proof. Let S := {u ∈ F |un = 1}. And let n′ be the maximal order of
elements in S. Clearly, n′ ≤ n It’s clear that S is an abelian multi-
plicative group. Therefore, it’s easy to see that order of elements in S
divides n′. It follows that un′ = 1 for all u ∈ S. Hence |S| ≤ n′.

Since we assume that (n, char(K)) = 1, therefore xn−1 is separable.
It follows that roots of xn − 1 are all distinct, hence |S| = n. One sees
that n = n′, therefore, there are elements of order n in S, denoted ζ.
It follows that F = K(S) = K(ζ).

For any σ ∈ GalF/K , σ(ζ) ∈ S. Hence σ(ζ) = ζ i for some i. There-
fore, we have a natural map φ : GalF/K → Zn by φ(σ) = i if σ(ζ) = ζ i.
Note that if ζ i is not a primitive n-th root of unity, then K(ζ i) is not
the splitting field of xn − 1, hence not equal to K(ζ), which is absurd.
Thus sigma we conclude that ζ i is a primitive n-th root of unity. It’s
easy to see that this is equivalent to (i, n) = 1. Thus φ : GalF/K → Z∗n
is an injective group homomorphism.

Lastly, if n = pk with p 6= 2 or if n = 2, 4, then Z∗n is cyclic. Hence
every subgroup is cyclic. ¤

The structure of cyclotomic extension is thus determined by the
primitive n-th root of unity. It’s then natural to ask the degree of
such extension and their minimal polynomials.

Definition 3.9.4. If charK - n, then the n-th cyclotomic polyno-
mial over K is defined as:

gn(x) :=
∏

ζi: prim. n-th root of 1

(x− ζi).

Proposition 3.9.5. We have the following:
1. xn − 1 =

∏
d|n gd(x).

2. gn(X) ∈ P [x], where P denoted the prime field. Moreover, if
charK = 0, we identify P = Q, then gn(x) ∈ Z[x].
3. deg(gn(x)) = ϕ(n), where ϕ denotes the Euler φ-function.

Proof. (3) is clear from the definition.
For (1), we consider the following decomposition of sets

{ζ i}i=0,...,n−1 = ∪d|n{ζ i|o(ζ i) = d}.
Note that o(ζ i) = d implies that ζ i is a primitive d-th root of unity.
Thus we define g′d(x) :=

∏
o(ζi)=d(x− ζ i), and then g′d(x)|gd(x). By the

decomposition, we have

xn − 1 =
∏

i=0,...,n−1

(x− ζ i) =
∏

d|n
g′d(x).
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Computing degrees, we have

n =
∑

d|n
deg(g′d(x)) ≤

∑

d|n
deg(gd(x)) =

∑

d|n
ϕ(d) = n.

Therefore, g′d(x) = gd(x).
To see (2), we prove by induction on n. We assume that gd(x) ∈ P [x]

for all d < n. We can write xn − 1 = gn(x)f(x) ∈ F [x]. In P [x], we
have xn−1 = f(x)q(x)+r(x) by the division algorithm. We shall prove
that r(x) = 0 and thus gn(x) = q(x) ∈ P [x] by the unique factorization
of F [x].

It suffices to show that r(x) = 0. To this end, note that f(x)|xn − 1
in F [x], and thus f(x)|r(x) in F [x]. However, deg(r(x)) < deg(f(x))
unless r(x) = 0. This completes the proof of (2).

When char(K) = 0, similar inductive argument plus Gauss Lemma
will work. We leave it to the readers. ¤

Finally, if K = Q then the cyclotomic extension behave even nicer.

Proposition 3.9.6. F = Q(ζ) be the n-th cyclotomic extension over
Q. Then
1. gn(x) is irreducible.
2. [F : bQ] = ϕ(n).
3. GalQF ∼= Z∗n.

Example 3.9.7.

Consider the 3-rd cyclotomic extension over F7. Then g3(x) = x3−1
x−1

=
(x− 2)(x− 4) is not irreducible. ¤

Proof. Asuuming (1), then F = Q[ζ] is generated by ζ, where minimal
polynomial of ζ over Q is gn(x). Thus [Q[ζ] : Q] = deg(gn(x)) =
ϕ(n). Morover, for every i ∈ Z∗n, the map ζ 7→ ζ i produces an Q-
automorphism of F . Thus (3) follows.

It thus suffices to prove (1). Recall that gn(x) ∈ Z[x]. If gn(x) =
f(x)h(x) ∈ Z[x], where f(x) is an irreducible polynomial with f(ζ) = 0.
We claim that ζp is also a root of f(x) for all (p, n) = 1. Grant this
claim, then by this process, we can conclude that ζ i is a root of f(x)
for all (i, n) = 1. Therefore, f(x) = gn(x) is irreducible.

We now prove the claim. Suppose on the contrary that ζp is not a
root of f(x). Then it’s a root of h(x). We have h(ζp) = 0. Hence ζ is
a root of h(xp). Since f(x) is irreducible, it’s minimal polynomial of ζ
over Q. We have f(x)|h(xp). Thus we can write h(xp) = f(x)k(x) for
some k(x) in Q[x]. By Gauss’ Lemma, this equation holds in fact in
Z[x]. We now consider ring homomorphism :̄Z[x] → Zp[x]. Then

(h(x))p = h(xp) = f(x)k(x).
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Thus g.c.d(h(x), h(x)) 6= 1 in Zp[x]. It follows that

xn − 1 = (
xn − 1

gn(x)
)f(x)h(x)

has multiple roots. But xn − 1
′
= nx̄n−1 6= 0. So this is the required

contradiction. ¤



54

Dec. 15, 2006

3.10. solving cubic polynomials. In this section, we are going to
review classical result on solving polynomials by using non-classical
language. I think this experience also serve a good start for Galois
theory in general.

Definition 3.10.1. A character from a group G to a field K is
group homomorphism χ : G → K∗. The set of characters is denoted
Homgp(G, K∗).

Let Hom(G,K) be the set of functions from G to K. It’s clear that
Hom(G,K) is a K-vector space.

Theorem 3.10.2 (E. Artin). Homgp(G,K∗) is linearly independent in
Hom(G,K).

Proof. Suppose on the contrary that Homgp(G,K∗) is not linearly in-
dependent. Pick a linearly dependent subset {χ1, ..., χn} of minimal n.
There are ai ∈ K such that

∑
aiχi = 0, i.e.

∑
aiχi(g) = 0, (∗)

for all g ∈ G. We can rewrite it as
∑

aiχi(gh) = 0, (∗∗)
for all g, h ∈ G. Multiply (∗) by χ1(h), we get

∑
aiχi(g)χ1(h) = 0. (∗ ∗ ∗)

Compare (∗) with (∗ ∗ ∗), we get
∑

ai(χi(h)− χ1(h))χi(g) = 0 for all g ∈ G.

Thus
∑n

i=2 ai(χi(h) − χ1(h))χi = 0 ∈ Hom(G,K). It follows that the
n− 1 elements {χ2, ..., χn} is linearly dependent, which is a contradic-
tion to the minimality. ¤

Corollary 3.10.3. Let F/K be an extension. The set of K-homomorphisms
from F to K is linearly independent in the K-vector space of linear
maps from F to K.

Sketch. Take G = F ∗. ¤

Let K be a field containing n-th root of unity ζ. Let F/K be a
Galois extension with Galois group ∼= Zn generated by σ. We consider

ψζ := 1 + ζσ + ζ2σ2 + ... + ζn−1σn−1 ∈ Hom(F, K).

Any element of the form ψ(x) is called a Lagrange resolvent.
By direct computation, we have the following properties.
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Proposition 3.10.4. Keep the notation as above, we have:
1. σ(ψζ(x)) = ζ−1ψζ(x).
2. ψ1(x) ∈ K.
3. (ψζ(x))n ∈ K.
4. (ψζ(x))(ψζ−1(x)) ∈ K.
5.

∑
ζ∈µn

ζ−rψζ(x) = nσr(x).

Now we can use this technique to solve cubic equations. Let f(x) =
x3 + px + q ∈ K[x] be an irreducible polynomial with discriminant
D = −4p3 − 27q2 ∈ K. We assume that K contains a primitive 3-root
of unity ζ. We have extension K ⊂ L := K[

√
D] ⊂ F := K[u1, u2, u3].

Note that F/L is Galois with Galois group ∼= Z3.
Step 1. ψζ 6= 0 ∈ Hom(F, K), in fact ψζ(u1) 6= 0.

Step 2. ψζ(u1) 6= L and (ψζ(u1))
3 ∈ L, thus F = L[ψζ(u1)].

And similarly, ψζ2(u1) ∈ L, (ψζ2(u1))
3 ∈ L. Moreover, ψζ(u1)ψζ2(u1) ∈

L.
Step 3. Solve ψζ(u1),ψζ2(u1) .
Recall that

∆ := (u1−u2)(u2−u3)(u3−u1) = u2
1u2+u3

2u3+u2
3u1−u1u

2
2−u2u

2
3−u3u

2
1.

ψζ(u1)
3 = u3

1+u3
2+u3

3+3ζ(u2
1u2+u2

2u3+u2
3u1)+ζ2(u1u

2
2+u2u

2
3+u3u

2
1)+6u1u2u3.

Let v1 = u2
1u2 + u2

2u3 + u2
3u1, v2 = u1u

2
2 + u2u

2
3 + u3u

2
1, then

v1 + v2 = (u1 + u2 + u3)(u1u2 + u2u3 + u3u1)− 3u1u2u3 = 3q,

v1 − v2 = ∆.

Thus ψζ(u1)
3 can be expressed in terms of p, q, ∆.

Step 4. solve u1, u2, u3 in terms of ψζ(u1),ψζ2(u1).
By the property 5 above, we have

3u1 = ψ1(u1) + ψζ(u1) + ψζ2(u1),

3u2 = 3σ(u1) = ψ1(u1) + ζ−1ψζ(u1) + ζ−2ψζ2(u1),

3u3 = 3σ2(u1) = ψ1(u1) + ζ−2ψζ(u1) + ζ−1ψζ2(u1).

And note that ψ1(u1) = 0. So one can solve cubic polynomial explicitly.

3.11. cyclic extension. The discussion in the previous section can be
extended to a more general setting.

Definition 3.11.1. We say that an extension is cyclic (resp. abelian)
if it’s algebraic Galois and GalF/K is cyclic (resp. abelian). An cyclic
extension of order n is an cyclic extension whose Galois group is iso-
morphic to Zn.

The following theorem characterize cyclic extension except some ex-
ceptional case.
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Theorem 3.11.2. Suppose that char(K) = 0 or char(K) = p - n.
Suppose furthermore that there is a primitive n-th root of unity in K,
say ζ. Then F/K is a cyclic of order n if and only if F = K(u) where
u is a root of irreducible polynomial xn − a ∈ K[x].

Before we get into the proof. Let’s consider the ”difference” be-
tween u and σ(u) for σ ∈ GalF/K . Let F/K be a finite Galois exten-
sion. Then in this circumstance, norm and trace (which we will define
more generally later) are nothing but NF/K(u) :=

∏
σ∈GalF/K

σ(u) and

TF/K :=
∑

σ∈GalF/K
σ(u). It’s easy to see that T (u − σ(u)) = 0 and

N(u/σ(u)) = 1. The follows lemma says that the converse is also true
for cyclic extension, which will play the central role in the study of
cyclic extension.

Lemma 3.11.3. Let F/K be an cyclic extension with σ the generator
of the Galois group.

(1) If TF/K(u) = 0, then there exists an v ∈ F such that u =
v − σ(v).

(2) (Hilbert’s Theorem 90) If NF/K(u) = 1, then there exists an
v ∈ F such that u = v/σ(v).

Proof of the Theorem 3.11.2. Let u be a root of xn − a, then all the
roots are uζ i for i = 0, ..., n − 1. Since ζ ∈ K. We can produce an
element in Galois group by considering σi : u 7→ uζ i. Thus we have
{σi}i=0,...,n−1 ⊂ GalKF . It’s clear that GalKF = {σi}i=0,...,n−1 =<
σ1 >. Thus F = K(u) is a cyclic extension over K.

Conversely, suppose that F/K is a cyclic extension of order n. Since
there is a primitive n-th root ζ ∈ K, one has N(ζ) = ζn = 1. By the
Lemma, there exist an v such that ζ = v/σ(v). Let u = v−1, then
σ(u) = ζu. Hence σ(un) = un ∈ K. Therefore u satisfies xn−a ∈ K[x]
for some a ∈ K.

Moreover, for uζ i and uζj, there is an automorphism sending uζ i to
uζj. So they have the same minimal polynomial p(x) dividing xn − a.
One the other hand, p(x) has n distinct roots uζ i for i = 0, ..., n − 1.
It follows that p(x) = xn − a is irreducible. One has [K(u) : K] = n
and thus F = K(u). ¤
Theorem 3.11.4. Suppose that char(K) = p 6= 0. Then F/K is a
cyclic extension of order n if and only if F = K(u), where u is a root
of an irreducible polynomial xp − x− a ∈ K[x].

Proof. The proof is parallel to the previous one.
Let u be a root of xp − x − a, then all the roots are u + i for i =

0, ..., p− 1. It’s clear that F = K(ζ) is a cyclic extension over K with
Galois group generated by σ such that σ(u) = u + 1.

Conversely, suppose that F/K is a cyclic extension of order n. One
has T (1) = p = 0. By the Lemma, there exist an v such that 1 =
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v − σ(v). Let u = −v, then σ(u) = u + 1. Hence σ(up) = up + 1 and
σ(up − u) = up − u. Therefore u satisfies xp − x − a ∈ K[x] for some
a ∈ K.

Moreover, for u + i and u + j, there is an automorphism sending
uζ i to uζj. So they have the same minimal polynomial p(x) dividing
xp − x − a. One the other hand, p(x) has p distinct roots u + i for
i = 0, ..., p − 1. It follows that p(x) = xp − x − a is irreducible. One
has [K(u) : K] = n and thus F = K(u). ¤

It remains to define norm and trace, and prove the main lemma
3.11.3.

Definition 3.11.5. Let [F : K] be a finite separable extension. Let Σ
be the set of K-embeddings of F into K. For any u ∈ F , we define the
norm, denoted

NF/K(u) := (
∏
σ∈Σ

σ(u)).

Similarly, we define the trace as

TF/K(u) := (Σσ∈Σσ(u)).

Example 3.11.6. If F/K is finite Galois extension, then the set of
all K-embeddings of F is nothing but the Galois group of F (since
F is normal). Therefore, NF/K(u) =

∏
σ∈GalF/K

σ(u) and TF/K(u) =∑
σ∈GalF/K

σ(u)

Proof of Lemma 3.11.3. We only prove that T (u) = 0 implies u =
v − σ(v). The other implication is easy.

Step 1. Find an element z ∈ F with T (z) 6= 0. This is an immediate
consequence of independency of automorphism.

Step 2. We normalize it to get w ∈ F with T (w) = 1. In fact, we
take w := z

T (z)
.

Step 3. Let

v = uw + (u + σ(u))σ(w) + ... + (u + σ(u) + ... + σn−2(u))σn−2(w).

Then by direct computation and T (u) =
∑

σ(u) = 0, we are done.
For the norm, if N(u) = 1, then u 6= 0. Take

v = uy + uσ(u)σ(y) + ... + uσ(u)...σn−1(u)σn−1(y).

By independency of automorphism, there exist a y such that v is non-
zero. One checks that u−1v = σ(v). We are done. ¤

3.12. radical extension.

Definition 3.12.1. F/K is said to be an radical extension if F =
K(u1, ..., un) such that for 1 ≤ i ≤ n, uni

i ∈ K(u1, ..., un−1).
For a polynomial f(x) ∈ K[x]. We say f(x) = 0 is solvable by radical

if its splitting field E is contained in some radical extension.
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Remark 3.12.2. In the definition, it’s not necessary that the splitting
field itself is a radical extension over K.

The main observation is the following:

Proposition 3.12.3. Let F/K be a radical and Galois extension over
K. Write F = K(u1, ..., un) such that for 1 ≤ i ≤ n, uni

i ∈ K(u1, ..., un−1).
Let m =

∏
ni and assume that char(K) - m. Suppose furthermore that

K contains a primitive m-th root of unity. Then GalF/K is solvable.

Proof. Let Ki := K(u1, ..., ui). And let Gi = K ′
i. One sees that K1

is cyclic over K, hence Galois over K. Hence G1 C G0 = GalF/K .
Consider next F/K1 which is radical and Galois. Then K2 is cyclic
over K1 and hence similarly, G2 C G1. Therefore, we have a solvable
series {e} = Gn C Gn−1 C ... C G0 = GalF/K with Gi−1/Gi cyclic. We
are done. ¤

One can actually generalize it to the following general setting:

Theorem 3.12.4. Let F/K be a radical extension, and K ⊂ E ⊂ F .
Then GalE/K is solvable. As a consequence, if f(x) = 0 is solvable by
radical, then Gf is solvable.

Proof. We first reduce to simpler situation.
Step 1. Let G = GalE/K and K0 = G′. It’s clear that F/K0 is radical,
and E/K0 is Galois for GalE/K0 = G′′ = G and G′′′ = G′. Thus F/K0

is radical and E/K0 is Galois with Galois group GalE/K .
We thus replacing K by K0 and assume that E/K is Galois.

Step 2. Reduce to the case that E = F/K is Galois. To see this, let
σ : F → K be an K-embedding. One can show that σ(F ) is again a
radical extension. One can also prove that if F1, F2 ⊂ K are radical
extension over K, then F1F2 is a radical extension over K. Hence let
N be the compositum of σ(F ) for all σ. It follows that N is radical
over K. Moreover, N is normal over K.

Since E/K is Galois, in particular, E is normal over K and E is a
stable intermediate subfield of N/K. Then one has a homomorphism
GalN/K → GalE/K . This is surjective because N is normal. Thus it
suffices to prove that GalN/K is solvable.
Step 3. By the same trick an in Step 1. We may assume that N/K is
Galois. Therefore, it suffices to show that if F/K is Galois and radical,
then GalF/K is solvable.
Step 4. Since F/K is separable, we may assume that (char(K), ni) =
1. Let m =

∏
ni.

Let ζ be a primitive m-th root of unity. We claim that F (ζ) is
Galois over K. Grant this for the time being, then F (ζ) is Galois over
K(ζ) and K(ζ)′ C GalF (ζ)/K . Moreover, GalF (ζ)/K/K(ζ)′ ∼= GalK(ζ)/K .
By Proposition 3.12.3, K(ζ)′ is solvable. K(ζ)/K is cyclotomic, hence
GalK(ζ)/K is solvable. Thus, GalF (ζ)/K is solvable.
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Now F/K is Galois, GalF/K
∼= GalF (ζ)/K/F ′ which is solvable.

Step 5. To prove the claim, suppose that F is a splitting field of
separable polynomial f1, .., fn ∈ K[x]. Then F (ζ) is nothing but a
splitting field of separable polynomials f1, ..., fn, xm − 1. Thus we are
done. ¤
Theorem 3.12.5. Let E be a finite dimensional Galois extension over
K with solvable Galois group. Assume that char(K) - [E : K], then
there is a radical extension F/K containing E.

Proof. We prover by induction on [E : K]. Let n = [E : K] and assume
the theorem is true for all Galois extension of degree < n.

Let ζ be a primitive n-th root of unity. Then E(ζ)/K(ζ) is Galois.
If [E(ζ) : K(ζ)] < n then we are done by induction hypothesis and the
fact that K(ζ)/K is radical.

By replacing E, K by E(ζ), K(ζ) respectively, we my assume that
K has m-th root of unity.

GalE/K is solvable, let H be a subgroup of index q, for some prime
q. Then H ′/K is a cyclic extension, hence a radical extension. By
induction hypothesis, E/H ′ is radical. We are done. ¤
Corollary 3.12.6. Let f(x) ∈ K[x] be a polynomial of degree n > 0.
Suppose that char(K) - n!, then f(x) = 0 is solvable by radical if and
only if Gf is solvable.
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3.13. separability and inseparability. We first recall something about
separable extension.

To start with, let f(x) be an irreducible polynomial in K[x] and
f ′(x) be its derivative (formally). More precisely, if f(x) =

∑n
i=0 aix

i,
then f ′(x) :=

∑n
i=1 iaix

i−1. One has the following equivalence:

(1) f(x) is separable, i.e. no multiple roots in K.
(2) (f(x), f ′(x)) = 1 ∈ K[x].
(3) (f(x), f ′(x)) = 1 ∈ K[x].
(4) f ′(x) = 0.

Therefore, the only possibility to have non-separable polynomial is
char(K) = p and f(x) = g(xp).

Given an element u algebraic over K, one can define the separable
degree to be the number of distinct roots of minimal polynomial. This
notion can be extended to a general setting:

Definition 3.13.1. Let F/K be an extension. Fix an embedding σ :
K → L = L. We define the separable degree of F/K, denoted [F : K]s,
to be the cardinality of

Sσ := {τ : F → L|τ|K = σ}.
In particular, if F = K(u) for some u with minimal polynomial p(x),

then [F : K]s is the number of distinct roots of p(x) in K.

One can check that [F : K]s is independent of σ and L. Hence the
definition is well-defined. Moreover, if F = K(u) for u algebraic over
K, then [F : K]s = [K(u) : K]s is the number of distinct roots of
the minimal polynomial p(x) of u. This can be seen by considering
K-embedding τ : K(u) → K, τ(u) must be a root of p(x) and τ is
determined by τ(u).

Proposition 3.13.2. If K ⊂ E ⊂ F , then [F : K]s = [F : E]s[E : K]s.
Moreover, if F/K is finite, then [F : K]s ≤ [F : K].

Sketch. The first statement follows from the definition.
It’s clear that [K(u) : K]s ≤ [K(u) : K] by definition. Then by

induction, we have [F : K]s ≤ [F : K] if [F : K] is finite. ¤
Then we have the following useful criterion:

Proposition 3.13.3. If F/K is finite, then F/K is separable if and
only if [F : K]s = [F : K].

Sketch. Suppose that F/K is separable. Let L be the maximal inter-
mediate subfield such that [L : K]s = [L : K]. We claim that L = F .
Suppose not, let u ∈ F −L. Since u is separable over K, it’s separable
over L. Thus [L(u) : L]s = [L(u) : L]. So [L(u) : K]s = [L(u) : K] give
the contradiction.
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Conversely, for any u ∈ F , one sees that

[F : K]s = [F : K(u)]s[K(u) : K]s ≤ [F : K(u)][K(u) : K] ≤ [F : K].

Since [F : K]s = [F : K], we have [K(u) : K]s = [K(u) : K]. Thus u is
separable over K. ¤

we can then prove the following:

Theorem 3.13.4. Suppose that F = K(S) such that each elements of
S is separable over K, then F/K is separable.

Sketch. By the previous Proposition, one can see that if u1, u2 are sep-
arable over K, then K(u1, u2) is separable over K.

In general, if u ∈ K(S), then u ∈ K(u1, ..., un) for some u1, ..., un ∈
S, hence separable over K. Then so is u. ¤

In particular, let

S := {u ∈ F |u is separable over K}.
Then S is an intermediate subfield over K. The reason can be seen as
following: u, v ∈ S, u + v, uv ∈ K(u, v). Since u, v are separable over
K. Then K(u, v) is an separable extension. Thus elements in K(u, v)
are separable over K.

Exercise 3.13.5.

Separable extension has the following properties:
1. Let K ⊂ E ⊂ F . Then F/K is separable if and only if F/E and
E/K are separable.
2 If E/K is separable then FE/F is separable for an extension F/K.
3 If E, F ⊂ L are separable extension over K. Then EF is separable
over K. ¤
Exercise 3.13.6.

Let F/K be a finite extension, then [F : K]s = [S : K]. ¤
Before we move onto the study of inseparability, we would like to

prove the famous theorem of primitive element.

Theorem 3.13.7. If F/K is separable and finite, then F = K(α) for
some α ∈ F .

In order to prove the theorem we need to study simple extensions.
When the base field is finite, then things are easy.

Proposition 3.13.8. If K is a finite field and F/K is an algebraic
field extension. The following are equivalent:

(1) F/K is finite.
(2) F = K(α) for some α ∈ f . That is, F/K is a simple extension.
(3) There is only finitely many intermediate fields.
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Proof. For (1) ⇒ (2), if F/K is finite, then F is finite. F ∗ is a cyclic
multiplicative group, say F ∗ =< α >. Then it’s clear that F = K(α).

(2) ⇒ (1) is trivial.
(1) ⇒ (3). Suppose that |K| = q, |F | = qn. Let E be an intermediate

field, then it’s clear that |E| = qd for some d|n. One can prove that
for any d|n, there is exactly one intermediate field with qd elements.
Hence there are only finitely many intermediate fields.

(3) ⇒ (1). Suppose on the other hand that F/K is not finite. First
consider the case that F/K is not algebraic, i.e. there is u ∈ F not
algebraic over K. Then we have infinitele many intermediate subfields
K(u) ⊃ K(u2) ⊂ K(u4).... Which is a contradiction.

Secondly, if F/K is algebraic. Then it is not finitely generated,
otherwise it’s finite. We can easily get (by axiom of choice) a infinite
sequence of intermediate fields

K ⊂ K(a1) ⊂ K(a1, a2)...

by adding generators. ¤

Proposition 3.13.9. Let F/K be a finite extension, then F = K(α)
if and only if there is only finitely many intermediate fields.

Proof. If K is finite, then we are done by the previous Proposition. We
assume that K is infinite.

Suppose that there is only finitely many intermediate fields. For any
α, β ∈ F , we can consider intermediate fields K(α + cβ) as c ranging
in K. Since K is infinite. There must exists c1, c2 ∈ K such that
K(α + c1β) = K(α + c2β). It’s easy to check that

K(α, β) = K(α + cβ).

By induction on number of generators of F/K, we proved that F/K is
a simple extension.

Suppose now that F = K(α). We would like to prove the finiteness
by using the following map:

φ : {E|K ⊂ E ⊂ F} → Σ := {pE(x)},
where pE(x) denotes the minimal polynomial of α over E. Since every
pE(x) is a divisor of pK(x) in the algebraic closure (or in the splitting
field), it’s clear that Σ is finite.

It’s enough to prove that φ is injective. To this end, let E0 be the
extension over K generated by coefficient of pE(x). One sees that
pE(x) ∈ E0[x] is irreducible and hence a minimal polynomial of α over
E0. Hence we have

[K(α) : E] = deg(pE(x)) = [K(α) : E0].

It follows that E = E0. Thus, if φ(E) = φ(E ′), then E = E0 = E ′.
This proved the injectivity. ¤
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Proof of Theorem 3.13.7. We may assume that K is infinite. By in-
duction on generators of F/K, we may assume that F = K(α, β). Let
n := [F : K]s, and σ1, ..., σn be the distinct embedding of F in K. Let

P (x) :=
∏

i6=j

(σi(α + βx)− σj(α− βx).

Since deg(P (x)) = n(n − 1) and there are infinitely many elements in
K, there must be an c ∈ K such that P (c) 6= 0. Thus all σi(α+cβ) are
all distinct. This gives n distinct embedding of K(α + cβ). One has

[F : K]s = n ≤ [K(α + cβ) : K]s ≤ [K(α + cβ) : K] ≤ [F : K].

Since F/K is separable, so is [F : K]s = [F : K]. Thus [K(α + cβ) :
K] ≤ [F : K], and therefore, K(α, β) = F = K(α + cβ). ¤

We now turn our interest to non-separable extension. Instead of
non-separable extension in general, we first study the special case the
all roots of minimal polynomial are the same.

Definition 3.13.10. Let F/K be an extension. An element u ∈ F is
purely inseparable over K if its minimal polynomial p(x) ∈ K[x] factors
in F [x] as (x − u)m. An extension F/K is purely inseparable over K
if every element of F is purely inseparable over K.

It’s easy to see that an element u ∈ F which is both separable and
purely inseparable over K if and only if u ∈ K.

Another useful observation is:

Lemma 3.13.11. Let F/K be an extension with char(K) = 0 6= 0.
If u ∈ F is algebraic over K, then upn

is separable over K for some
n ≥ 0.

Proof. The point is that if u is not separable, then its minimal polyno-
mial p(x) is of the form f(xp). Then f(x) is the minimal polynomial
of up. By induction on degree of u, we are done. ¤

Being purely inseparable has the following equivalent formulation:

Theorem 3.13.12. Let F/K be an algebraic extension with char(K) =
p 6= 0. The following are equivalent:

(1) F/K is purely inseparable, i.e. every element u ∈ F has mini-
mal polynomial of the form (x− u)m.

(2) for all u ∈ F , the minimal polynomial is of the form xpn − a ∈
K[x].

(3) for all u ∈ F , upn ∈ K for some n ≥ 0.
(4) S = K, that is, the only element of F which is separable over

K are the elements in K.
(5) F/K is generated by purely inseparable elements.
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Proof. Let m = pnr.

(x− u)m = (x− u)pnr = (xpn − upn

)r = xm − rupn

xpn(r−1) + ... ∈ K[x].

Therefore, upn ∈ K, this proved (1) ⇒ (3).
Moreover, p′(x) := xpn − upn

) ∈ K[x] and p′(x)r is the minimal
polynomial of u (hence irreducible). Therefore, r = 1. This proved
(1) ⇒ (2).

(2) ⇒ (3) is trivial.
For (3) ⇒ (1), let a = upn ∈ K, then f(x) := xpn − a ∈ K[x] and

factors in F [x] as (x − u)pn
. Hence the minimal polynomial of u over

K is a factor of f(x) and factors into (x− u)m in F [x].
We have seen (1) ⇒ (4) and (5), (4) ⇒ (3) follows from the above

Lemma 3.13.11.
It remains to show that (5) ⇒ (3). To see this, first note that

F = K(Σ) where Σ consists of elements ui such that upn

i ∈ K for some

n (By the proof of (1) ⇒ (3)). For any u ∈ F , say u = f(u1,...,ur)
g(u1,...,ur)

. Pick

N such that upN

i ∈ K, ∀i = 1, ..., r. Then upN ∈ K. ¤
As a corollary, one can show that

P := {u ∈ F |u is purely inseparable over K}
is an intermediate subfield.

Theorem 3.13.13. Let F/K be an algebraic extension. Keep the no-
tation as above for S, P .

(1) S/K is separable.
(2) P/K is purely inseparable.
(3) F/S is purely inseparable.
(4) F/P is separable if and only F = PS.
(5) P ∩ S = K.
(6) if F/K is normal, then S/K and F/P are Galois. And GalF/K =

GalF/P
∼= GalS/K.

Proof. We have seen (1), (2), (5). (3) follows from Lemm 3.13.11. For
(4), look at P ⊂ SP ⊂ F . If F/P is separable, then F/SP is separable.
Look at S ⊂ SP ⊂ F now. We have F/K is purely inseparable, thus
so is F/SP . Thus F = SP .

On the other hand, if F = SP = P (S), then clearly F = P (S) is
separable over P .

Lastly, we look at G := GalF/K . We claim that G′ = P , hence F/P
is Galois with Galois group GalF/P = GalF/K .

To see the claim, if u ∈ P , then it’s clear that σ(u) = u for all σ ∈ G.
Therefore, P ⊂ G′. On the other hand, if u ∈ G′ and v is another root
of p(x), the minimal polynomial of u. There is an σ such that σ(u) = v.
Since F/K is normal, this σ can be extended to G. But u ∈ G′, thus
v = u, in other words, p(x) = (x− u)m.
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F is Galois over P because P = G′. Hence F/P is separable. By
(5), F = PS.

Lastly, we consider GalF/P = GalF/K → GalS/K by restriction. This
is well-defined since S is stable. More precisely, for u ∈ S, σ(u) ∈ S
for all σ ∈ G because σ(u) has the same minimal polynomial as u
does. This is surjective by extension theorem. It remains to show the
injectivity. If σ|S = τ |S, then for all u ∈ F we have upn ∈ S. Thus,

σ(u)pn

= σ(upn

) = τ(upn

) = τ(u)pn

.

It follows that σ(u) = τ(u).
It remains to show that S/K is Galois. To see this, suppose u ∈ S is

fixed by all σ ∈ G, then u ∈ G′ = P . Hence u ∈ K. We are done. ¤
Definition 3.13.14. Let F/K be a finite extension. We define the
inseparable degree of F/K, denoted [F : K]i, to be [F : K]/[F : K]s.

Note that [F : K]i = [F : S] = pn for some n.
If char(K) = p 6= 0, we write Kp = {up|u ∈ K}.

Definition 3.13.15. K is said to be perfect if Kp = K

Example 3.13.16. Finite fields are perfect. Fp(x) is not perfect.

Corollary 3.13.17. Let F/K be an algebraic extension with char(K) =
p 6= 0. We have

(1) If F/K is separable, then F = KF pn
for each n ≥ 1.

(2) If F/K is finite and F = KF p, then F/K is separable.
(3) In particular, u ∈ F is separable over K if and only if K(up) =

K(u).

Note that F p is not necessarily an extension over K. So is F pn
. But

we can take KF pn
, which is an extension over K.

Proof. We first suppose that F/K is finite, hence finitely generated.
Write F = K(u1, ..., ur). It’s clear that there is N ≥ 1 such that

upN ∈ S. Hence F pN ⊂ S, therefore, KF pN ⊂ S.
We claim that S = KF pN

. To see this, one notices that F is purely
inseparable over KF pN

, so is S purely inseparable over KF pN
. And

on the other hand, S is separable over K, so is over KF pN
. Hence

S = KF pN
.

For (1), if F/K is separable and finite, then we have F = KF pN
.

However, in the proof, one can choose N to be arbitrary large. More
precisely, one has F = KF pN

for all N ≥ N0. By looking at the
inclusion

F = KF pN ⊂ KF pN−1 ⊂ ... ⊂ KF p ⊂ F.

One has F = KF pn
for all n ≥ 1.

Suppose now that F/K is separable but not necessarily finite. For
any u ∈ F , we consider F0 := K(u) which is separable and finite over

K. Thus u ∈ F0 = KF pn

0 ⊂ KF pn
for all n ≥ 1. This proves (1).
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We now prove (2). If F = KF p, then F = K(KF p)p = KF p2
.

Inductively, one has F = KF pn
for all n ≥ 1. Since we have show that

S = KF pN
, it follows that F = S.

Apply the statement to a single element. We consider F = K(u).
F p ⊂ Kp(up) ⊂ K(up) . Indeed, KF p = K(up). By (2), if K(u) =
K(up), then u is separable. By (1), if u is separable, then K(u) =
K(up). ¤
3.14. transcendental extension. We now start our discussion on
transcendental extension. The main purpose is to show that the con-
cept of transcendental degree, which is the cardinality of transcendental
basis, can be well-defined. Moreover, transcendental degree is a good
candidate for defining dimension.

Definition 3.14.1. Let F/K be an extension. S ⊂ F is said to be
algebraically dependent (over K) if there is an n ≥ 1 and an f 6= 0 ∈
K[x1, ..., xn] such that f(s1, ..., sn) = 0 for some s1, ..., sn ∈ S. Roughly
speaking, some element of S satisfy a non-zero algebraic relation f over
K.

S is said to be algebraically independent over K if it’s not alge-
braically dependent over K.

Example 3.14.2. For any u ∈ F , {u} is algebraically dependent over
K if and only if u is algebraic over K.

Example 3.14.3. In the extension K(x1, ..., xn)/K, S = {x1, ..., xn}
is algebraically independent over K.
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The following theorem says that finitely generated purely transcen-
dental extension are just rational function fields.

Theorem 3.14.4. If {s1, ..., sn} ⊂ F is algebraically independent over
K. Then K(s1, ..., sn) ∼= K(x1, ..., xn).

Proof. We consider the homomorphism θ : K[x1, ..., xn] → K[s1, ..., sn].
θ is surjective by definition. It’s injective because {s1, ..., sn} ⊂ F is
algebraically independent. Then θ induces an isomorphism on quotient
fields. ¤

One notices that the notion of being algebraic independent is an
analogue of being linearly independent. Therefore, one can try to define
the notion of ”basis” and ”dimension” in a similar way.

Definition 3.14.5. S ⊂ F is said to be a transcendental basis of F/K
if S is a maximal algebraically independent set. In other words, for all
u ∈ F − S, S ∪ {u} is algebraically dependent.

We will then define the transcendental degree to be the cardinality of
a transcendental basis (in a analogue of dimension). In order to show
that this is well-defined. We need to work harder.

Proposition 3.14.6. Let S ⊂ F be an algebraically independent set
over K and u ∈ F −K(S). Then S ∪ {u} is algebraically independent
if and only if u is transcendental over K(S).

Proof. The proof is straightforward. ¤
Corollary 3.14.7. S is a transcendental basis of F/K if and only if
F/K(S) is algebraic.

Proof. Suppose that S is a transcendental basis of F/K. If u ∈ F −
K(S), then S ∪ {u} is not algebraically independent. Thus, u is alge-
braic over K(S) by the Proposition.

On the other hand, suppose that F/K(S) is algebraic. Then for all
u ∈ F − S, u is algebraic over K(S). By the Proposition, S ∪ {u}
is algebraically dependent if u ∈ F − K(S). In fact, it’s easy to see
directly that S ∪ {u} is algebraically dependent if u ∈ K(S). Thus S
is a maximal algebraically independent set. ¤
Corollary 3.14.8. Let S ⊂ F be an subset over such that F/K(S) is
algebraic. Then S contains a transcendental basis.

Proof. By Zorn’s Lemma, there exists a maximal algebraically inde-
pendent subset S ′ ⊂ S. Then K(S) is algebraic over K(S ′) and hence
F is algebraic over K(S ′). ¤
Theorem 3.14.9. Let S, T be transcendental bases of F/K. If S is
finite, then |T | = |S|.
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Proof. Let S = {s1, ..., sn} and S ′ := {s2, ..., sn}. We first claim that
there is an element t ∈ T , say t = t1 such that {t1, s2, ..., sn} is a
transcendental basis.

to see this, if every element of T is algebraic over K(S ′), then F is
algebraic over K(T ) hence over K(S ′) which is a contradiction. Thus,
there is an element t ∈ T , say t = t1 such that t1 is transcendental over
K(S ′). And hence T ′ := {t1, s2, ..., sn} is algebraically independent.

By the maximality of S, one sees that s1 is algebraic over K(T ′).
It follows that F is algebraic over K(t1, s1, ..., sn) and hence algebraic
over K(T ′). Therefore, T ′ is a transcendental basis.

By induction, one sees that there is a transcendental basis {t1, ..., tn} ⊂
T . Thus T = {t1, ..., tn}. ¤

Theorem 3.14.10. Let S, T be transcendental bases of F/K. If S is
infinite, then |T | = |S|.
Proof. By the previous theorem, we may assume that T is infinite as
well.

For s ∈ S, we have s ∈ F hence algebraic over K(T ). Let Ts ⊂ T be
the subset of T of elements that appearing in the minimal polynomial
of s. It’s clear that Ts 6= ∅ otherwise, s is algebraic K which is not the
case. Also note that Ts is finite.

Let T ′ := ∪s∈STs. We claim that T ′ = T . To this end, one sees that
for u ∈ F , u is algebraic over K(S) and hence algebraic over K(T ′).
Thus F/K(T ′) is algebraic. T is a transcendental basis, hence T = T ′.

Lastly, one sees that

|T | = |T ′| = | ∪s∈S Ts| ≤ |S| · ℵ0 = |S|.
Replace S by T , one has |S| ≤ |T |. We are done. ¤

With these two theorem, we can define the transcendental degree of
an extension. And the definition is independent of choices of basis.

Definition 3.14.11. Let F/K be an extension and S be a transcen-
dental basis. We define the transcendental degree of F/K, denoted
tr.d.F/K, to be |S|.
Theorem 3.14.12. Let F/E and E/K be extensions. Then

tr.d.F/K = tr.d.F/E + tr.d.E/K.

Proof. Let T be a transcendental basis of F/E and S be a transcen-
dental basis of E/K. We would like to show that S ∪ T is a transcen-
dental basis of F/K. Note that T ∩ E = ∅, hence S ∩ T = ∅. Thus
|S ∪ T | = |S|+ |T |, and we are done.

To see the claim, it’s easy to check that E(T ) = EK(S ∪ T ). Hence
E(T )/K(S ∪ T ) is algebraic if E/K(S) is algebraic. Also, F/E(T ) is
algebraic, therefore, F/K(S ∪ T ) is algebraic.
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It suffices to show that S ∪ T is algebraically independent. Suppose
that there is f(x1, ..., xn, y1, ..., ym) such that f(s1, ..., sn, t1, ..., tm) = 0.
We can write

f(x1, ..., xn, y1, ..., ym) =
∑

I

hI(x1, ..., xn)yI ,

and we have
∑

I hI(s1, ..., sn)tI . Since T is algebraically independent
over E 3 hI(s1, ..., sn). It follows that hI(s1, ..., sn) = 0 for all I. Since
S is algebraically independent over K, if follows that hI(x1, ..., xn) =
0 ∈ K[x1, ..., xn] for all I. Therefore f(x1, ..., xn, y1, ..., ym) = 0. Hence
S ∪ T is algebraically independent. ¤
Example 3.14.13.

Let V := {(a, b)|a3 = b2, a, b ∈ K}. Then ”polynomial function on V
can be described as R := K[x, y]/(y2−x3). And rational functions on V
is nothing but the field of quotient of R, denoted F . Then tr.d.KF = 1,
which is the same as the ”dimension of V ”. ¤

Some related problems:
1. Lüroth’s theorem and rationality problem.
The Lüroth’s theorem states that a non-trivial subfield of k(x) is of
the form k(t), where t ∈ K(x). More generally, one can ask a subfield
E ⊂ K(x, y) of tr.dK = 2 is purely transcendental or not. One can
prove that this is true when K = C by geometric method. However,
this is not true in general when transcendental degree is higher.

Nevertheless, suppose that there is a finite group G acts on k(x1, ..., xn).
One can ask whether the subfield of invariant purely transcendental or
not. Or under what condition, the field of invariant is purely transcen-
dental. A variety (as V above) is called rational if its rational function
field is purely transcendental. So this is called rationality problem.
2. Automorphism of function fields.
Consider F = K(x). It’s well-known that AutK(F ) = PGL(2, K).
How about K-automorphism F = K(x1, ..., xn)?
3. Characterize birational invariants.
Varieties as said to be birational if their function fields are isomor-
phic. Therefore, those birational invariant, which reflect the birational
geometry of varieties, are invariant of fields. Can you read it from the
fields?
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4. Homological Algebra

Some useful references:
Serge Lang,Algebra, GTM 211, Springer
S. Gelfand, Y. Manin, Methods of homological algebra, Springer
David Eisenbud, Commutative algebra, GTM 150, Springer

4.1. categories and functors. In this section, we are going to define
some basic notions.

Definition 4.1.1. A category is a class C of objects, denoted A,B, C, ...,
etc., together with

(1) a class of disjoint set, denoted HomC(A, B), called morphism
and

(2) for each triple (A,B, C) of objects a function Hom(B, C) ×
Hom(A,B) → Hom(A,C), called the composition subjects to
(a) h ◦ (g ◦ f) = (h ◦ g) ◦ f .
(b) for each object A ∈ C, there exists 1A ∈ Hom(A,A) such

that 1A ◦ f = f, f ◦ 1A = f .

Example 4.1.2.

(1) The category of Sets, denoted Set .
(2) The category of groups, denoted Gp, is a subcategory of Set .
(3) The category of abelian groups, denoted Ab, is a subcategory

of Gp.

Definition 4.1.3. Let C,D be categories. A covariant functor (resp.
contravariant functor) F of C to D is a rule which to each object A ∈ C
associate an object F (A) ∈ D, and to each morphism f : A → B
associate a morphism F (f) : F (A) → F (B) (resp. F (f) : F (B) →
F (A)) such that:

(1) F (1A) = 1F (A).
(2) F (g ◦ f) = F (g) ◦ F (f) (resp. F (g ◦ f) = F (f) ◦ F (g)).

There are many cases we met the universal property. This can be
seen via the universal object in a suitable category.

Definition 4.1.4. In a category C, an object P is said to be universally
attracting (resp. repelling) if Hom(A,P ) (resp. Hom(P, A)) has only
one element for all A ∈ C.
Example 4.1.5.

The group of one element is the universally repelling and attracting
object in Gp.

Example 4.1.6.
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Fixed a set S. Let C be the category of maps form S to abelian
groups. The free abelian group is the universally repelling object.

Similarly, if we consider the category of maps from S to groups. Then
we get free group by considering the universal repelling object. ¤
Example 4.1.7.

In a category C, the product of A,B can be defined as (P, f, g) con-
sisting of an object P and f : P → A, g : P → B such that for any
(C, s, t), there exist a unique h : C → P , which makes the diagram
commute.

In other words, let D be the category of the triple (C, s, t), then P
is nothing but the universal attracting object. ¤

We now formulate the axioms of additive category and abelian
category.

A1. Hom(A,B) is an abelian group. And composition is bilinear.
A2. There exist a zero object 0, i.e. such that Hom(0, A), Hom(A, 0)

has precisely one element.
A3. Finite direct sum and finite direct product exist. In other

words, for A1, A2 ∈ C, there exist an object C ∈ C and pi : C → Ai,
ıi : Ai → C such that piıi = 1Ai

, piıj = 0 if i 6= j, ı1p1 + ı2p2 = 1C .
A4. For any morphism f : A → B, there exist a sequence, called a

canonical decomposition

K
k→ A

ı→ I
→ B

c→ K ′

such that

(1)  ◦ ı = f
(2) K is the kernel of f and K ′ is the cokernel of f .
(3) I is cokernel of k and kernel of c.

In the above canonical decomposition, K can be viewed as kernel, I
as the image and K ′ as the cokernel.

Definition 4.1.8. A category satisfying A1, A2, A3 is called an addi-
tive category. An additive category satisfying A4 is called an abelian
category.

Remark 4.1.9. The kernel and cokernel should be defined abstractly.
For example, given A ∈ C, one can define a functor hA : C◦ → Set
such that hA(C) = Hom(C, A). A functor F is representable by B
is F ∼= hB.

In an additive categoty C, for a morphism f : A → B, one can
define a kernel functor Ker(f) : C◦ → Ab such that Ker(f)(C) =
Ker(hA(C) → hB(C)).

We say that kernel of f exists if the functor Ker(f) is representable.
Cokernel can be defined similarly but a little bit subtle. It’s ker(f ◦)◦.

Example 4.1.10.
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The followings are abelian categories:

(1) Ab.
(2) category of R-modules, where R is a ring.
(3) category of finite dimensional vector space over k.
(4) category of sheaves of abelian groups over a topological space.

¤

4.2. complexes, examples of homology and cohomology groups.
There are various situation where we need to consider a sequence of
abelian group. This is basically why homological algebra arise.

Definition 4.2.1. Let A be an abelian category. A comlpex K• =
(Ki, di)i∈Z consists of Ki ∈ A, di : Ki → Ki+1 such that di+1di = 0 for
all i.

A complex is said to be exact if ker(di+1) = im(di).

Example 4.2.2 (Homology of simplicial complex).

Given a simplicial complex X, we can view it as ∪Xn, where Xn

denotes the n-skeleton. To each n, we attach a free abelian Cn on
n-simlpex. Note that there is a natural boundary map ∂n from a n-
complex to (n− 1)− complex. Note that one need to handle signs by
considering the orientation. It follows that ∂ ◦ ∂ = 0. Hence we have a
complex of free abelian groups (Cn, ∂).

The homology can be considered as the obstruction of this complex
being exactness. That is, Hi(X,Z) := ker(∂n)/im(∂n−1).

For example, the homology of S2 can be realized by

0 → Z[f ] → Z[e1]⊕ Z[e2] → Z[x1]⊕ Z[x2]⊕ Z[x3] → 0.

And ∂[f ] = [e1] + [e2] − [e2] − [e1], ∂[e1] = [x2] − [x1], ∂[e2] = [x3] −
[x2], ∂[xi] = 0. Therefore, H2(S

2) ∼= Z, H1
∼= 0, H0

∼= Z. ¤

Exercise 4.2.3. compute the homology of Sn,RP2, T 2 and Klein bottle.

Example 4.2.4.

[differential forms, De Rham complex and cohomology] Let X be
a differentiable manifold, e.g Rn. Let Ci be the vector space of C∞
i-forms on X. There is the natural differential d : Ci → Ci+1. Then
we have a complex (Ci, d), called the de Rham complex. Similarly, we
have de Rham cohomology H i := ker(di)/im(di−1). ¤
Example 4.2.5 (Koszul complex, free resolution).

Given a ring R = k[x, y, z, w]/(xz − y2, xw − yz, yw − z2). How can
we realize it via describing generators and relations?

Let S = k[x, y, x], then there is an exact sequence

0 → ⊕S2 → ⊕3S
(xz−y2,xw−yz,yw−z2)−→ S → R → 0.
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So the ring R can be realized as the complex of free modules. This is
an example of so-called free-resolution. ¤

What we would like to do is more or less the algebraic structure
needed for this kind of situation.
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4.3. complexes, exact sequences. .

Definition 4.3.1. By a short exact sequence, we mean an exact se-
quence 0 → A → B → C → 0.

Example 4.3.2.

1. Let A,B be abelian groups, then we have exact sequence:

0 → A
ıA→ A⊕B

pB→ B → 0.

2. Let A C B be abelain groups, then we have exact sequence:

0 → A → B → B/A → 0.

3. Let ϕ : B → C be a surjective homomorphism, then we have exact
sequence:

0 → ker(ϕ) → B → C → 0.

¤
Given a long exact sequence K• = (K i, di), it can be decomposed

into short exact sequences

0 → ker(di) = im(di−1) → K i → im(di) = ker(di+1) → 0.

Therefore, short exact sequences play the most important role in our
studies.

Given a morphism φ ∈ Hom(K•, L•) of complexes, one can define its
kernel, image, cokernel, in a natural way. Thus we can formulate a new
category Kom(A), whose objects are complexes over A and morphisms
are morphism of complexes.

Exercise 4.3.3. Kom(A) is an abelian category in which A is a sub-
category.

Let K• be a complex. We let Zi := ker(di), called the i-th cocycle
and Bi := im(di−1), called the i-th coboundary. Then H i(K•) :=
Zi/Bi is called the i-th cohomology of K•. Cohomology can be
viewed as a tool detecting the non-exactness of complexes.

Given two complexes K•, L•, a morphism of complexes φ ∈ HomA(K•, L•)
consists of morphisms φi : Ki → Li such that φi+1 ◦ di

K = di
L ◦ φi for

all i. Another way to put it is the following diagram commute:

−−−→ Ki
di

K−−−→ Ki+1 −−−→
φi

y φi+1

y

−−−→ Li
di

L−−−→ Li+1 −−−→
One can easily checked that there is an induced map H i(φ) : H i(K•) →

H i(L•) for all i. Moreover, if φ, ψ are morphism of complexes, then
H i(ψ) ◦H i(φ) = H i(ψ ◦ φ) for all i whenever it make sense.

Before we move on, we discuss the following useful lemmas:
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Lemma 4.3.4 (Snake Lemma). Given a diagram

A′ f−−−→ A −−−→ A′′ −−−→ 0

d′
y d

y d′′
y

0 −−−→ B′ −−−→ B
g−−−→ B′′

with each rows are exact. Then there is a well-defined map δ : ker(d′′) →
coker(d′) such that we have an exact sequence

ker(d′)
f→ ker(d) → ker(d′′)

δ→ coker(d′) → coker(d)
ḡ→ coker(d′′).

If moreover that f : A′ → A is injective, then f : ker(d′) → ker(d) is
injective. And if g : B → B′′ is surjective, then ḡ : coker(d)→coker(d′′)
is surjective.

Proof. The proof consists of various diagram chasing. We leave it to
the reader. ¤

Corollary 4.3.5. Keep the notation as above. If both d′, d′′ are injec-
tive (resp. surjective) then so is d.

Assume that f is injective and g is surjective. If any two of d′, d, d′′

are isomorphism. So is the third one.

Lemma 4.3.6 (Five Lemma). Given a diagram

A1 −−−→ A2 −−−→ A3 −−−→ A4 −−−→ A5

d1

y d2

y d3

y d4

y d5

y
B1 −−−→ B2 −−−→ B3 −−−→ B4 −−−→ b5

with each rows are exact.
If d1 is surjective (resp. injective) and d2, d4 are injective (resp.

surjective), then d3 is injective (resp. surjective).
In particular, if d1, d2, d4, d5 are isomorphic, then so is d3.

Proof. Decompose the sequence into short exact sequences. ¤

An immediate application is the following:

Proposition 4.3.7. Given an exact sequence 0 → A
f→ B

g→ C → 0,
the following are equivalent:

(1) there is h : C → B such that gh = 1C.
(2) there is l : B → A such that lf = 1A.

(3) the sequence is isomorphic to 0 → A
ıA→ A⊕ C

pC→ C → 0.

Such sequence is called split.
If the sequence split, then in particular, B ∼= A⊕ C.
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Proof. Given h : C → B, we can construct the following commutative
diagram:

0 −−−→ A
ıA−−−→ A⊕ C

pC−−−→ C −−−→ 0y 1A

y fpA+hpC

y 1C

y
y

0 −−−→ A
f−−−→ B

g−−−→ C −−−→ 0
By Five Lemma, fpA + hpC is an isomorphism. Hence those two se-
quences are isomorphic.

On the other hand, if the two sequence are isomorphic. That is we
have the following commutative diagram, which is invertible:

0 −−−→ A
ıA−−−→ A⊕ C

pC−−−→ C −−−→ 0

1A

y φ

y 1C

y
0 −−−→ A

f−−−→ B
g−−−→ C −−−→ 0

Let h = φ ◦ ıC : C → B, then gh = gφıC = 1CpCıC = 1C .
The proof for other equivalence is similar. ¤

Theorem 4.3.8. Given a short exact of complexes, then it induces a
long exact sequences of cohomology.

Proof. This can be proved directly, or by Snake Lemma.
We briefly sketch the proof by using Snake Lemma here.
First look at the diagram

0 −−−→ Ai−1 −−−→ Bi−1 −−−→ C i−1 −−−→ 0y
y

y
0 −−−→ Ai −−−→ Bi −−−→ Ci −−−→ 0

Then we have exact sequence Ai/Bi(A•) → Bi/Bi(B•) → Ci/Bi(C•) →
0 by looking at cokernel of the maps.

Next we look at the diagram

0 −−−→ Ai+1 −−−→ Bi+1 −−−→ C i+1 −−−→ 0y
y

y
0 −−−→ Ai+2 −−−→ Bi+2 −−−→ C i+2 −−−→ 0

Then we have exact sequence 0 → Zi+1(A•) → Zi+1(B•) → Zi+1(C•)
by looking at kernels.

These two exact sequences fit into a commutative diagram

Ai/Bi(A•) −−−→ Bi/Bi(B•) −−−→ Ci/Bi(C•) −−−→ 0

d̄i
A

y
y

y
0 −−−→ Zi+1(A•) −−−→ Zi+1(B•) −−−→ Zi+1(C•)

One can check that ker(d̄i
A) = H i(A•) and coker(d̄i

A) = H i+1(A•).
And similarly for B• and C•. Hence by Snake Lemma, we are done. ¤
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Definition 4.3.9. Let F : A → B be a functor between two abelian
categories. We say that F is exact if for an exact sequence K• over
over A, F (K•) is exact over B.

Exercise 4.3.10. Show that F is exact if and only if for any short
exact sequence 0 → A → B → C → 0 in A, the induced sequence
0 → F (A) → F (B) → F (C) → 0 is exact in B.

Definition 4.3.11. Keep the notation as above. We say that F is left-
exact (resp. right-exact) if for any short exact sequence 0 → A → B →
C → 0 in A, the induced sequence 0 → F (A) → F (B) → F (C) (resp.
F (A) → F (B) → F (C) → 0) is exact in B.

Unfortunately, most natural functors are left-exact (or right-exact)
but not exact. We list some of them:

Example 4.3.12.

Let X be a topological space. Let ShX be the category of sheaves on
X, which is an abelian category. The global section functor Γ(X, ·) :
ShX → Ab is left exact but not exact. ¤
Example 4.3.13.

Let Ab be the category of abelian groups. Fixed M ∈ Ab, we consider
Hom(M.·) : Ab → Ab by A 7→ Hom(M,A). This is left-exact but not
right exact. ¤

It is natural to ask what the defect of these functors. Which will be
realized in the next section
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4.4. injective. In this section, we are going to define injective objects.
Then one has injective resolution if the category has enough injectives.
Moreover, we will see that injective resolution are convenient for han-
dling left exact but not exact functors.

Definition 4.4.1. Let A be an abelian category. An object I ∈ A is
injective if for all 0 → A → B and A → I, there exists B → I makes
the diagram commute.

Proposition 4.4.2. I is injective if and only if the functor M 7→
HomA(M, I) is exact.

Proof. For every exact sequence 0 → A → B → C → 0, we have exact
sequence

Hom(A, I) ← Hom(B, I) ← Hom(C, I) ← 0.

The definition of injective says nothing more than that Hom(B, I) →
Hom(A, I) is surjective. ¤
Exercise 4.4.3. If I is injective, then every sequence 0 → I → B →
C → 0 splits.

An abelian category A is said to have enough injectives if for
every A ∈ A, there exist an injective object I ∈ A and an injection
0 → A → I.

Suppose now that A has enough injectives. Then for every A ∈ A,
one has 0 → A

ı→ I0 for some injective I0. Next look at coker(ı), one
has 0 → coker(ı) → I1 for some injective I1 and let d0 : I0 → I1 be
the composition map. Inductively, we obtained a sequence

0 → A → I0 → I1...

It’s easy to see that it’s an exact sequence because it patches short

exact sequences 0 → coker(ıj−1)
ıj→ Ij → coker(ıj) → 0.

Before we move on, it worthwhile to think what indeed injective
object is and why we expect an abelian category has enough injectives.

Let Ab be the abelian category of abelian groups. A group G is said
to be divisible if m : G → G by m : x 7→ mx is surjective for all
m 6= 0 ∈ Z. In other words, for x ∈ G, and for all m 6= 0 ∈ Z, there is
y ∈ G such that ny = x. We will show that in Ab:

Lemma 4.4.4. G is divisible, then G is injective.

Lemma 4.4.5. Every abelian group can be embedded into a divisible
group.

Thus the abelian category Ab has enough injective. It also follows
that those natural abelian categories, such as category of R-modules,
category of sheaves of abelian groups, has enough injective.

In order to prove the Lemmata, we observe that:
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(1) if G is divisible, so if G/N for any normal subgroup N .
(2) if Gi are divisible for all i, then

∑
i∈I Gi is divisible.

proof of 4.4.4. Suppose that G is divisible and 0 → A′ → A is exact
with a map f ′ : A′ → G. We need to show that there is f : A → G
extending f ′.

We shall use Zorn’s Lemma. Let Σ = {(B, g)|A′ < B < A, g : B →
G, g|A′ = f ′}. There exists a maximal element (M,h) in Σ. One verifies
that M = A. ¤

proof of 4.4.5. G ∼= F/K, F ∼= ∑
x∈I Zx. F

f
↪→ ∑

x∈I Qx. G ∼= F/K ∼=
f(F )/f(K) <

∑
x∈I Qx/f(K) is divisible. ¤

Lemma 4.4.6. Let I• be an injective resolution of A and J• an injec-
tive resolution of B. If there is ϕ : A → B, then there exists f : I• → J•

compatible with ϕ.
Moreover any two such f, g : I• → J• are homotopic.

Definition 4.4.7. f, g ∈ Hom(K•, L•) are homotopic if there are hi :
Ki → Li−1 such that dLh + hdK = f − g.

Injective resolution is very useful in the study of left exact functors
which is not exact. More, precise the following Lemma show that
injective rsln splits

Lemma 4.4.8. Given 0 → A → B → C → 0, there is an exact
sequence of complexes 0 → I• → J• → K• → 0 such that I• (resp,
J•, K•) is an injective resolution of A (resp. B,C). Moreover, J i =
I i ⊕Ki.

Proof. We define I0, K0 first. Then there is a natural map B → J0 :=
I0 ⊕K0. This map is injective.

Then inductively, we get the resolutions. ¤
Warning: J is not I⊕K as complex. For example, the map I0⊕K0 →

I1 ⊕ K1 is of the form (dI(i
0) + ∗, dK(k0)) where ∗ is not necessarily

zero.
We are now ready to study the left-exact functors. Apply F to

0 −−−→ A −−−→ B −−−→ C −−−→ 0y
y

y
0 −−−→ I• −−−→ J• −−−→ K• −−−→ 0

We get

0 −−−→ F (A) −−−→ F (B) −−−→ F (C)y
y

y
0 −−−→ F (I•) −−−→ F (J•) −−−→ F (K•) −−−→ 0

Notice that the bottom row is exact because J i = I i ⊕ Ki by our
construction, hence F (J i) = F (I i)⊕ F (K i) for all i.
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Proposition 4.4.9. Let RiF (A) := H i(F (I•)). Then we have:

(1) R0F (A) = A.
(2) there is a long exact sequence

0 → F (A) → F (B) → F (C) → R1F (A) → R1F (B) → ...

Proof. It’s easy to see that ker(F (I0) → F (I1)) ∼= F (A) by the left
exactness. And the second statement follows from the long exact se-
quence of cohomology of short exact sequence of complexes. ¤

Exercise 4.4.10. Show that RiF (A) is well-defined. That is, indepen-
dent of choice of injective resolution.

4.5. derived category. In this section, we are going to describe de-
rived category briefly. It’s a category over which cohomology theory
can be defined and convenient to operate.

Exercise 4.5.1. If h is homotopic to 0, denoted h ∼ 0, then fh ∼ 0,
hg ∼ 0 for all f, g whenever it makes sense.

So we can think of the class of homotopic equivalence as an ideal.
Let K(A) be the category whose objects are complex in A and mor-

phisms are morphism in A quotient homotopic equivalence. More
precisely, HomK(A)(K

•, L•) consists of homotopic equivalent class of
HomKom(A)(K

•, L•).
Then in K(A), injective resolution is unique (up to isomorphism).

Definition 4.5.2. Given a complex K• = (Ki, di
K), we define K[n]•

such that K[n]i = Kn+1, di
K[n] = (−1)ndn+i

K .

And given a morphism f : K• → L•, we define a complex C(f)•,
called the mapping cone of f , by C(f)i = K i+1⊕Li and di

C(ki+1, li) =
(−di+1

K (ki+1), f(ki+1) + di
L(li)).

Example 4.5.3.

If K• = K,L• = L, then C(f) = 0 → K → L → 0. ¤

Example 4.5.4.

If f = 0, then C(f) = K• ⊕ L•.

Definition 4.5.5. Given a morphsim f : K• → L•, we define a com-
plex Cyl(f)• such that Cyl(f)i = Ki⊕Ki+1⊕Li. And di

Cyl(k
i, ki+1, li) =

(dKki − ki+1,−dKki+1, f(ki+1) + dLli).
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Theorem 4.5.6. We have the following diagram

0 −−−→ L• −−−→ C(f)•
δ−−−→ K[1]• −−−→ 0

α

y
y

0 −−−→ K• f̄−−−→ Cyl(f)• π−−−→ C(f)• −−−→ 0

=

y β

y
K• f−−−→ L•

Such that each row is exact. α, β are quasi-isomorphisms. Moreover,
βα = 1L and αβ ∼ 1Cyl(f).

Proof. All the above maps are the natural ones. One has to check that
all the maps indeed gives morphism of complexes and the diagram
commutes. We leave the detail to the readers.

The homotopy is defined by hi(ki, ki+1, li) = (0, ki, 0). ¤
Theorem 4.5.7. Given an exact sequence 0 → K• → L• → M• →
0, we have the following commutative diagram with each vertical map
being quasi-isomorphic.

0 −−−→ K• f−−−→ L•
g−−−→ M• −−−→ 0x β

x γ

x

0 −−−→ K• f̄−−−→ Cyl(f)• π−−−→ C(f)• −−−→ 0

,

where γ(ki+1, li) = g(li).
The second row is called distinguished triangle.

Derived category D(A) is the category localizing K(A) with respect
to quasi-isomorphisms. That is, a morphism HomD(A)(X,Y ) in D(A) is
a roof (t, f) where t : Z• → X• is a quasi-isomorphism and f : Z• → Y •

is a morphism in K(A). Then in this setting, a quasi-isomorphism
s : X• → Y • has inverse (s,1X) ∈ HomD(A)(Y

•, X•).
Derived category has the universal property that any functor F :

Kom(A) → D sending quasi-isomorphism into isomorphism can be
uniquely factored through D(A).

Note that a cohomology (homology) theory on A is nothing but a
functor F : Kom(A) → Kom(Ab) and thus factors through derived
category.


