
Algebraic surfaces

Bertini’s theorem, Ampleness Criterion, Intersection theory and
Riemann-Roch theorem on surfaces

Remark 0.1. Please refer to [Ha, II 7] for ampleness and very ampleness. Another
source is Hartshorne’s book: Ample subvarieties of algebraic varieties, Lecture Notes
in Mathematics 156. The discussion of intersection can be found in [Ha, V 1], while
Riemann-Roch appears in [Ha, appendix A]. The proof of Bertini’s theorem is the
one in [G-H, p137]=[Griffiths, Harris]. For more discussion on cone of curves, we
refer [Kollár, Mori]: Birational geometry of algebraic varieties. In which they give
a complete treatment of minimal model program.

Let D be a divisor on X. If D′ ∼ D, then O(D) ∼= O(D′). Thus sometime it’s
useful to pick a better element in |D| instead of looking at D itself.

Theorem 0.2 (Bertini). Let Bs|D| be the base locus of |D|. If dim|D| ≥ 1, then
the general member of |D| is non-singular away from the Bs|D|.

In particular, if |D| is base point free, then general member in |D| is non-singular.

Proof. Fix D0, D1 ∈ |D| with local equation f, f + g on an affine open set U ⊂ X.
We have a subseries (a pencil) Dλ ∈ |D| locally defined by f + λg. Suppose that
Pλ ∈ U is a singular point of Dλ not in the base locus B := Bs|D|. We may assume
that g(Pλ) 6= 0. We have

f + λg(Pλ) = 0,

and
∂

∂zi
(f + λg)(Pλ) = 0,

for all zi. Where z1, ..., zn are the local coordinates.
These equations defines a subvariety in Z ⊂ U × P1. And let V = pr1(Z) ⊂ U .
One note that f/g is locally constant (−λ) on V −B. Hence for λ different from

value of f/g, Dλ is non-singular away from B (in U).
Next one notice that one can cover X by finitely many affine open sets. ¤

Remark 0.3. If |D| is very ample, then it is base point free.

Definition 0.4. A divisor D is said to be ample if mD is very ample for some
m > 0.

Our first aim is the following:

Theorem 0.5. Let D be a divisor on a projective variety X. There exist a very
ample divisor A such that A + D is very ample.

Corollary 0.6. Let D be a divisor on a projective variety X. Then there are
non-singular very ample divisor Y1, Y2 such that D ∼ Y1 − Y2

Lemma 0.7. The following are equivalent:
(1) D is ample.
(2) For every coherent sheaf F on X, we have Hi(X,F⊗O(nD)) = 0 for all

i > 0 and n À 0.
(3) For every coherent sheaf F on X, F⊗O(nD) is globally generated for all

n À 0.

Remark 0.8. A sheaf is globally generated if the natural map H0(X,F)⊗OX → F
is surjective. If F = O(D) for some divisor D, then O(D) is globally generated if
and only if D is base point free.
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Exercise 0.9. Show that if D1 is very ample and D2 is base point free, then D1+D2

is very ample.
(Hint: consider the subspace L(D1)⊗L(D2) ⊂ L(D1 + D2). Show that the map

defined by this subspace is everywhere defined and an embedding. Thus the map
defined by D1 + D2 is an embedding.

proof of theorem 0.5. X is projective, then X ↪→ Pn for some n. Take H a hyper-
plane in Pn , then H ∩X is a very ample divisor on X. By abuse the notation, we
still called it,denoted H ,a hyperplane section.

Note that very ample is clearly ample. Hence by the Lemma 0.8 (3), there is an
n0 such that D + n0H is base point free. By the exercise, D + (n0 + 1)H is very
ample. ¤

We are now able to define intersection of subvarieties. We start by considering
intersection on surface.

Theorem 0.10. Let X be a non-singular projective surface. There is a unique
pairing Div(X) × Div(X) → Z, denoted by C.D for any two divisor C, D, such
that

(1) if C and D are non-singular curves meeting transversally, then C.D =
#(C ∩D),

(2) it is symmetric. i.e. C.D = D.C,
(3) it is additive. i.e. (C1 + C2).D = C1.D + C2.D,
(4) it depends only on the linear equivalence classes. i.e. if C1 ∼ C2 then

C1.D = C2.D.

Proof. See [Ha, V 1.1]. ¤

Remark 0.11. Let X be a projective variety. An 1-cycle is a formal linear com-
bination of irreducible curves. The group of all 1-cycles is denoted Z1(X) (=free
abelian group on irreducible curves). One can similarly define a pairing Z1(X) ×
Div(X) → Z.

Two curves C1, C2 are said to be numerically equivalent if C1.D = C2.D for all
D, denoted C1 ≡ C2. We define

N1(X) := Z1(X)⊗R/ ≡ .

It’s a famous theorem asserts that N1(X) is finite dimensional. Its dimensional
is called Picard number, denoted ρ(X).

Remark 0.12. Let V ⊂ X be a subvariety of codimension i, and D is a divisor.
Then it make sense to consider V.Di by decomposing D ∼ H1−H2 and then compute
(V ∩Hi).Di−1 in V ∩Hi inductively on dimension. One can simply set

V.Di := (V ∩H1).Di−1 − (V ∩H2).Di−1.

Remark 0.13. Let X be a variety over C. A divisor D gives a class c1(D) ∈
H2(X,Z) via Div(X) → H1(X,O∗) → H2(X,Z). And a curve C give rise to a
class [C] ∈ H2(X,Z). The pairing H2(X,Z)×H2(X,Z) → Z gives an intersection
theory.

An important feature of ampleness is that it’s indeed a ”numerical property”.

Theorem 0.14 (Nakai’s criterion). Let X be a projective variety. A divisor D is
ample if and only V.Di > 0 for all subvariety of codimension i.

In particular, if dimX = 2, then D is ample if and only if D.D > 0 and D.C > 0
for all irreducible curve C.
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Another important criterion is due to Kleiman. Let NE(X) ⊂ N1(X) be the
cone generated by effective curves. And let NE(X) be its closure.

For any divisor D, it defines a linear functional on N1(X) and we set D>0 =
{x ∈ N1(X)|(x.D) > 0}.
Theorem 0.15 (Kleiman’s criterion). D is ample if and only if

D>0 ⊃ NE(X)− {0}.
Before we revisit the Riemann-Roch theorem on surface, we need the useful

adjunction formula:

Proposition 0.16 (Adjunction formula). Let S ⊂ X be a non-singular subvariety
of codimension 1 in a non-singular variety X. Then KS := KX+S|S. In particular,
if dimX = 2 then 2g(S)− 2 = (KX + S).S

Given a codimension 1 subvariety Y ⊂ X and a divisor D ∈ Div(X) . One can
consider the restriction D|Y , which is supposedly to be a divisor. However, this
is not totally trivial. For D =

∑
niDi, one might want to consider naively that

D|Y :=
∑

ni(Di∩Y ). But what if Di = Y for some i? That is, how to define Y |Y ?
One way to think of this is that we deform Y such that limt→0 Yt = Y , then we

take Y |Y := limt→0 Yt|Y . (This needs some extra care).

proof of adjunction formula. Recall that a canonical divisor is a divisor defined by
n-forms if dimX = n. Thus one has Ωn

X
∼= OX(KX). Where Ωn

X denote the sheaf
of n-forms on X. Also one can consider sheaf of n-forms on X with pole along S,
denoted Ωn

X(S). It’s clear that Ωn
X(S) ∼= OX(KX + S).

One has the following exact sequence

0 → OX(KX) → OX(KX + S) → OS(KX + S|S) → 0.

On the other hand, one has the Poincaré residue map

Ωn
X(S) ³ Ωn−1

S

with kernel Ωn
X . Comparing these two sequences, one sees that Ωn−1

S
∼= OS(KX +

S|S). Hence the canonical divisor KS = KX + S|S .
We now describe the Poincaré residue map. (cf. [G-H, p147]). The problem is

local in nature, it suffices to describe it locally. We may assume that on a small
open set U , S is defined by f . And let z1, .., zn be the local coordinates of U .

The sheaf Ωn
X(S) on U can be written as ω = g(z)dz1∧...∧dn

f(z) . Since S is non-

singular, then at least one of ∂f
∂zi

6= 0. The residue map send ω to

ω′ := (−1)i−1 g(z)dz1 ∧ ... ∧ d̂zi ∧ ... ∧ dn

∂f/∂zi
|f=0 .

This is independent of choice of i since on S

df =
∂f

∂z1
dz1 + ... +

∂f

∂zn
dzn = 0.

Another way to put it is that the residue map sends ω to ω′ such that ω = df
f ∧ω′.

It’s clear that the ω′ = 0 if and only if f(z)|g(z), which means that ω is indeed
in Ωn

X .
¤

Theorem 0.17 (Riemann-Roch theorem for divisors on surfaces). Let X be a non-
singular projective surface and D ∈ Div(X) a divisor on X, then one has

χ(X, D) = χ(X,OX) +
1
2
D.(D −KX).
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Proof. Write D ∼ H1 − H2 with Hi are non-singular very ample divisor. We
consider the sequences:

0 → O(D) ∼= O(H1 −H2) → O(H1) → OH2(H1) → 0,

0 → O → O(H1) → OH1(H1) → 0.

It’s clear that
χ(X,D) = χ(X, H1)− χ(H2,OH2(H1))

= χ(X,OX) + χ(H1,OH1(H1))− χ(H2,OH2(H1)).
By Riemann-Roch on curves and adjunction formula,

χ(H1,OH1(H1)) = H1.H1 + 1− g(H1) = H1.H1 + 1− 1
2
(KX + H1).H1,

χ(H2,OH2(H1)) = H1.H2 + 1− 1
2
(KX + H2).H2.

Collecting terms, one has

χ(X,D) = χ(X,OX)+
1
2
(H1−H2).(H1−H2−KX) = χ(X,OX)+

1
2
D.(D−KX).
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