Algebraic surfaces

Bertini's theorem, Ampleness Criterion, Intersection theory and Riemann-Roch theorem on surfaces

Remark 0.1. Please refer to [Ha, II 7] for ampleness and very ampleness. Another source is Hartshorne's book: Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics 156. The discussion of intersection can be found in [Ha, V 1], while Riemann-Roch appears in [Ha, appendix A]. The proof of Bertini's theorem is the one in [G-H, p137]=[Griffiths, Harris]. For more discussion on cone of curves, we refer [Kollár, Mori]: Birational geometry of algebraic varieties. In which they give a complete treatment of minimal model program.

Let D be a divisor on X. If $D' \sim D$, then $\mathcal{O}(D) \cong \mathcal{O}(D')$. Thus sometime it's useful to pick a better element in |D| instead of looking at D itself.

Theorem 0.2 (Bertini). Let Bs|D| be the base locus of |D|. If dim $|D| \ge 1$, then the general member of |D| is non-singular away from the Bs|D|.

In particular, if |D| is base point free, then general member in |D| is non-singular.

Proof. Fix $D_0, D_1 \in |D|$ with local equation f, f + g on an affine open set $U \subset X$. We have a subseries (a pencil) $D_{\lambda} \in |D|$ locally defined by $f + \lambda g$. Suppose that $P_{\lambda} \in U$ is a singular point of D_{λ} not in the base locus B := Bs|D|. We may assume that $g(P_{\lambda}) \neq 0$. We have

 $f + \lambda g(P_{\lambda}) = 0,$

and

$$\frac{\partial}{\partial z_i}(f + \lambda g)(P_\lambda) = 0,$$

for all z_i . Where $z_1, ..., z_n$ are the local coordinates.

These equations defines a subvariety in $Z \subset U \times \mathbb{P}^1$. And let $V = pr_1(Z) \subset U$.

One note that f/g is locally constant $(-\lambda)$ on V-B. Hence for λ different from value of f/g, D_{λ} is non-singular away from B (in U).

Next one notice that one can cover X by finitely many affine open sets. \Box

Remark 0.3. If |D| is very ample, then it is base point free.

Definition 0.4. A divisor D is said to be ample if mD is very ample for some m > 0.

Our first aim is the following:

Theorem 0.5. Let D be a divisor on a projective variety X. There exist a very ample divisor A such that A + D is very ample.

Corollary 0.6. Let D be a divisor on a projective variety X. Then there are non-singular very ample divisor Y_1, Y_2 such that $D \sim Y_1 - Y_2$

Lemma 0.7. The following are equivalent:

- (1) D is ample.
- (2) For every coherent sheaf \mathcal{F} on X, we have $H^i(X, \mathcal{F} \otimes \mathcal{O}(nD)) = 0$ for all i > 0 and $n \gg 0$.
- (3) For every coherent sheaf \mathcal{F} on X, $\mathcal{F} \otimes \mathcal{O}(nD)$ is globally generated for all $n \gg 0$.

Remark 0.8. A sheaf is globally generated if the natural map $H^0(X, \mathcal{F}) \otimes \mathcal{O}_X \to \mathcal{F}$ is surjective. If $\mathcal{F} = \mathcal{O}(D)$ for some divisor D, then $\mathcal{O}(D)$ is globally generated if and only if D is base point free. **Exercise 0.9.** Show that if D_1 is very ample and D_2 is base point free, then D_1+D_2 is very ample.

(Hint: consider the subspace $\mathcal{L}(D_1) \otimes \mathcal{L}(D_2) \subset \mathcal{L}(D_1 + D_2)$). Show that the map defined by this subspace is everywhere defined and an embedding. Thus the map defined by $D_1 + D_2$ is an embedding.

proof of theorem 0.5. X is projective, then $X \hookrightarrow \mathbb{P}^n$ for some n. Take H a hyperplane in \mathbb{P}^n , then $H \cap X$ is a very ample divisor on X. By abuse the notation, we still called it, denoted H, a hyperplane section.

Note that very ample is clearly ample. Hence by the Lemma 0.8 (3), there is an n_0 such that $D + n_0 H$ is base point free. By the exercise, $D + (n_0 + 1)H$ is very ample.

We are now able to define intersection of subvarieties. We start by considering intersection on surface.

Theorem 0.10. Let X be a non-singular projective surface. There is a unique pairing $Div(X) \times Div(X) \rightarrow \mathbb{Z}$, denoted by C.D for any two divisor C, D, such that

- (1) if C and D are non-singular curves meeting transversally, then $C.D = \#(C \cap D)$,
- (2) it is symmetric. i.e. C.D = D.C,
- (3) it is additive. i.e. $(C_1 + C_2).D = C_1.D + C_2.D$,
- (4) it depends only on the linear equivalence classes. i.e. if $C_1 \sim C_2$ then $C_1.D = C_2.D$.

Proof. See [Ha, V 1.1].

Remark 0.11. Let X be a projective variety. An 1-cycle is a formal linear combination of irreducible curves. The group of all 1-cycles is denoted $Z_1(X)$ (=free abelian group on irreducible curves). One can similarly define a pairing $Z_1(X) \times Div(X) \to \mathbb{Z}$.

Two curves C_1, C_2 are said to be numerically equivalent if $C_1.D = C_2.D$ for all D, denoted $C_1 \equiv C_2$. We define

$$N_1(X) := Z_1(X) \otimes \mathbb{R} / \equiv .$$

It's a famous theorem asserts that $N_1(X)$ is finite dimensional. Its dimensional is called Picard number, denoted $\rho(X)$.

Remark 0.12. Let $V \subset X$ be a subvariety of codimension *i*, and *D* is a divisor. Then it make sense to consider $V.D^i$ by decomposing $D \sim H_1 - H_2$ and then compute $(V \cap H_i).D^{i-1}$ in $V \cap H_i$ inductively on dimension. One can simply set

$$V.D^{i} := (V \cap H_{1}).D^{i-1} - (V \cap H_{2}).D^{i-1}$$

Remark 0.13. Let X be a variety over \mathbb{C} . A divisor D gives a class $c_1(D) \in H^2(X,\mathbb{Z})$ via $Div(X) \to H^1(X, \mathcal{O}^*) \to H^2(X,\mathbb{Z})$. And a curve C give rise to a class $[C] \in H_2(X,\mathbb{Z})$. The pairing $H_2(X,\mathbb{Z}) \times H^2(X,\mathbb{Z}) \to \mathbb{Z}$ gives an intersection theory.

An important feature of ampleness is that it's indeed a "numerical property".

Theorem 0.14 (Nakai's criterion). Let X be a projective variety. A divisor D is ample if and only $V.D^i > 0$ for all subvariety of codimension i.

In particular, if $\dim X = 2$, then D is ample if and only if D.D > 0 and D.C > 0 for all irreducible curve C.

Another important criterion is due to Kleiman. Let $NE(X) \subset N_1(X)$ be the cone generated by effective curves. And let $\overline{NE(X)}$ be its closure.

For any divisor D, it defines a linear functional on $N_1(X)$ and we set $D_{>0} = \{x \in N_1(X) | (x.D) > 0\}.$

Theorem 0.15 (Kleiman's criterion). *D* is ample if and only if

$$D_{>0} \supset NE(X) - \{0\}.$$

Before we revisit the Riemann-Roch theorem on surface, we need the useful adjunction formula:

Proposition 0.16 (Adjunction formula). Let $S \subset X$ be a non-singular subvariety of codimension 1 in a non-singular variety X. Then $K_S := K_X + S|_S$. In particular, if dimX = 2 then $2g(S) - 2 = (K_X + S).S$

Given a codimension 1 subvariety $Y \subset X$ and a divisor $D \in Div(X)$. One can consider the restriction $D|_Y$, which is supposedly to be a divisor. However, this is not totally trivial. For $D = \sum n_i D_i$, one might want to consider naively that $D|_Y := \sum n_i (D_i \cap Y)$. But what if $D_i = Y$ for some *i*? That is, how to define $Y|_Y$?

One way to think of this is that we deform Y such that $\lim_{t\to 0} Y_t = Y$, then we take $Y|_Y := \lim_{t\to 0} Y_t|_Y$. (This needs some extra care).

proof of adjunction formula. Recall that a canonical divisor is a divisor defined by *n*-forms if dimX = n. Thus one has $\Omega_X^n \cong \mathcal{O}_X(K_X)$. Where Ω_X^n denote the sheaf of *n*-forms on *X*. Also one can consider sheaf of *n*-forms on *X* with pole along *S*, denoted $\Omega_X^n(S)$. It's clear that $\Omega_X^n(S) \cong \mathcal{O}_X(K_X + S)$.

One has the following exact sequence

$$0 \to \mathcal{O}_X(K_X) \to \mathcal{O}_X(K_X + S) \to \mathcal{O}_S(K_X + S|_S) \to 0.$$

On the other hand, one has the Poincaré residue map

$$\Omega^n_X(S) \twoheadrightarrow \Omega^{n-1}_S$$

with kernel Ω_X^n . Comparing these two sequences, one sees that $\Omega_S^{n-1} \cong \mathcal{O}_S(K_X + S|_S)$. Hence the canonical divisor $K_S = K_X + S|_S$.

We now describe the Poincaré residue map. (cf. [G-H, p147]). The problem is local in nature, it suffices to describe it locally. We may assume that on a small open set U, S is defined by f. And let $z_1, ..., z_n$ be the local coordinates of U.

The sheaf $\Omega_X^n(S)$ on U can be written as $\omega = \frac{g(z)dz_1 \wedge \dots \wedge d_n}{f(z)}$. Since S is nonsingular, then at least one of $\frac{\partial f}{\partial z_i} \neq 0$. The residue map send ω to

$$\omega' := (-1)^{i-1} \frac{g(z)dz_1 \wedge \ldots \wedge \widehat{dz_i} \wedge \ldots \wedge d_n}{\partial f/\partial z_i} \mid_{f=0} .$$

This is independent of choice of i since on S

$$df = \frac{\partial f}{\partial z_1} dz_1 + \ldots + \frac{\partial f}{\partial z_n} dz_n = 0$$

Another way to put it is that the residue map sends ω to ω' such that $\omega = \frac{dt}{f} \wedge \omega'$. It's clear that the $\omega' = 0$ if and only if f(z)|g(z), which means that ω is indeed in Ω_X^n .

Theorem 0.17 (Riemann-Roch theorem for divisors on surfaces). Let X be a nonsingular projective surface and $D \in Div(X)$ a divisor on X, then one has

$$\chi(X,D) = \chi(X,\mathcal{O}_X) + \frac{1}{2}D.(D-K_X).$$

Proof. Write $D \sim H_1 - H_2$ with H_i are non-singular very ample divisor. We consider the sequences:

$$0 \to \mathcal{O}(D) \cong \mathcal{O}(H_1 - H_2) \to \mathcal{O}(H_1) \to \mathcal{O}_{H_2}(H_1) \to 0,$$

$$0 \to \mathcal{O} \to \mathcal{O}(H_1) \to \mathcal{O}_{H_1}(H_1) \to 0.$$

It's clear that

$$\chi(X,D) = \chi(X,H_1) - \chi(H_2,\mathcal{O}_{H_2}(H_1))$$

= $\chi(X,\mathcal{O}_X) + \chi(H_1,\mathcal{O}_{H_1}(H_1)) - \chi(H_2,\mathcal{O}_{H_2}(H_1)).$

By Riemann-Roch on curves and adjunction formula,

$$\chi(H_1, \mathcal{O}_{H_1}(H_1)) = H_1.H_1 + 1 - g(H_1) = H_1.H_1 + 1 - \frac{1}{2}(K_X + H_1).H_1,$$

$$\chi(H_2, \mathcal{O}_{H_2}(H_1)) = H_1.H_2 + 1 - \frac{1}{2}(K_X + H_2).H_2.$$

Collecting terms, one has

$$\chi(X,D) = \chi(X,\mathcal{O}_X) + \frac{1}{2}(H_1 - H_2).(H_1 - H_2 - K_X) = \chi(X,\mathcal{O}_X) + \frac{1}{2}D.(D - K_X).$$