Algebraic surfaces

BERTINI’S THEOREM, AMPLENESS CRITERION, INTERSECTION THEORY AND
RIEMANN-ROCH THEOREM ON SURFACES

Remark 0.1. Please refer to [Ha, II 7] for ampleness and very ampleness. Another
source is Hartshorne’s book: Ample subvarieties of algebraic varieties, Lecture Notes
in Mathematics 156. The discussion of intersection can be found in [Ha, V 1], while
Riemann-Roch appears in [Ha, appendiz A]. The proof of Bertini’s theorem is the
one in [G-H, p137]=[Griffiths, Harris]. For more discussion on cone of curves, we
refer [Kolldr, Mori]: Birational geometry of algebraic varieties. In which they give
a complete treatment of minimal model program.

Let D be a divisor on X. If D’ ~ D, then O(D) = O(D’). Thus sometime it’s
useful to pick a better element in |D| instead of looking at D itself.

Theorem 0.2 (Bertini). Let Bs|D| be the base locus of |D|. If dim|D| > 1, then
the general member of |D| is non-singular away from the Bs|D|.
In particular, if | D| is base point free, then general member in |D| is non-singular.

Proof. Fix Dy, Dy € |D| with local equation f, f + g on an affine open set U C X.
We have a subseries (a pencil) Dy € |D| locally defined by f + Ag. Suppose that
Py € U is asingular point of Dy not in the base locus B := Bs|D|. We may assume
that g(P») # 0. We have

[+ Ag(Py) =0,
and

-+ X)(Py) =0,

for all z;. Where z1, ..., z,, are the local coordinates.
These equations defines a subvariety in Z C U x P1. And let V = pry(Z) C U.
One note that f/g is locally constant (—A) on V' — B. Hence for X different from
value of f/g, Dy is non-singular away from B (in U).
Next one notice that one can cover X by finitely many affine open sets. O

Remark 0.3. If |D| is very ample, then it is base point free.

Definition 0.4. A divisor D is said to be ample if mD is very ample for some
m > 0.

Our first aim is the following:

Theorem 0.5. Let D be a divisor on a projective variety X. There exist a very
ample divisor A such that A+ D is very ample.

Corollary 0.6. Let D be a divisor on a projective variety X. Then there are
non-stngular very ample divisor Y1,Ys such that D ~ Y, — Y,

Lemma 0.7. The following are equivalent:
(1) D is ample.
(2) For every coherent sheaf F on X, we have H' (X, FoO(nD)) = 0 for all
t>0 andn>0.
(3) For every coherent sheaf F on X, FRO(nD) is globally generated for all
n > 0.

Remark 0.8. A sheaf is globally generated if the natural map H°(X, F)@Ox — F
is surjective. If F = O(D) for some divisor D, then O(D) is globally generated if
and only if D is base point free.
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Exercise 0.9. Show that if Dy is very ample and D5 is base point free, then D1+ Do
is very ample.

(Hint: consider the subspace L(D1)®L(D2) C L(D1 + D3). Show that the map
defined by this subspace is everywhere defined and an embedding. Thus the map
defined by Dy + Do is an embedding.

proof of theorem 0.5. X is projective, then X < P™ for some n. Take H a hyper-
plane in P™ | then H N X is a very ample divisor on X. By abuse the notation, we
still called it,denoted H ,a hyperplane section.

Note that very ample is clearly ample. Hence by the Lemma 0.8 (3), there is an
no such that D + noH is base point free. By the exercise, D + (ng + 1)H is very
ample. O

We are now able to define intersection of subvarieties. We start by considering
intersection on surface.

Theorem 0.10. Let X be a non-singular projective surface. There is a unique
pairing Div(X) x Div(X) — Z, denoted by C.D for any two divisor C, D, such
that

(1) if C and D are non-singular curves meeting transversally, then C.D =
4(Cn D),

(2) it is symmetric. i.e. C.D = D.C,

(3) it is additive. i.e. (C1+ Cy).D =C1.D+ Cs.D,

(4) it depends only on the linear equivalence classes. i.e. if Cy ~ Co then
C1.D =C5.D.

Proof. See [Ha, V 1.1]. O

Remark 0.11. Let X be a projective variety. An 1-cycle is a formal linear com-
bination of irreducible curves. The group of all 1-cycles is denoted Z1(X) (=free
abelian group on irreducible curves). One can similarly define a pairing Z1(X) X
Div(X) — Z.

Two curves C1,Cy are said to be numerically equivalent if C1.D = Cy.D for all
D, denoted C; = Cy. We define

Ni(X) = Z1(X)OR/ =

It’s a famous theorem asserts that N1(X) is finite dimensional. Its dimensional
is called Picard number, denoted p(X).

Remark 0.12. Let V C X be a subvariety of codimension i, and D is a divisor.
Then it make sense to consider V.D' by decomposing D ~ Hy—Hy and then compute
(VN H;).D'=Y in V N H; inductively on dimension. One can simply set

V.D":= (VN H).D"'—(VnHy).D™

Remark 0.13. Let X be a variety over C. A divisor D gives a class ¢1(D) €
H?*(X,Z) via Div(X) — HY(X,0*) — H*(X,Z). And a curve C give rise to a
class [C] € Ho(X,Z). The pairing Ho(X,Z) x H*(X,Z) — Z gives an intersection
theory.

An important feature of ampleness is that it’s indeed a "numerical property”.

Theorem 0.14 (Nakai’s criterion). Let X be a projective variety. A divisor D is
ample if and only V.D* > 0 for all subvariety of codimension i.

In particular, if dimX = 2, then D is ample if and only if D.D > 0 and D.C >0
for all irreducible curve C.
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Another important criterion is due to Kleiman. Let NE(X) C N;(X) be the
cone generated by effective curves. And let NE(X) be its closure.

For any divisor D, it defines a linear functional on N;(X) and we set D<o =
{z € N1(X)|(z.D) > 0}.

Theorem 0.15 (Kleiman’s criterion). D is ample if and only if

D-y D NE(X) — {0}.
Before we revisit the Riemann-Roch theorem on surface, we need the useful
adjunction formula:

Proposition 0.16 (Adjunction formula). Let S C X be a non-singular subvariety
of codimension 1 in a non-singular variety X. Then Kg := Kx+S|s. In particular,
if dimX = 2 then 29(S) —2 = (Kx + 5).5

Given a codimension 1 subvariety Y C X and a divisor D € Div(X) . One can
consider the restriction D|y, which is supposedly to be a divisor. However, this
is not totally trivial. For D = > n;D;, one might want to consider naively that
Dly :=> n;(D;NY). But what if D; =Y for some ¢? That is, how to define Y|y-?

One way to think of this is that we deform Y such that lim;_,o Y; =Y, then we
take Y|y := lim;_q Y|y . (This needs some extra care).

proof of adjunction formula. Recall that a canonical divisor is a divisor defined by
n-forms if dimX = n. Thus one has Q% = Ox(Kx). Where Q% denote the sheaf
of n-forms on X. Also one can consider sheaf of n-forms on X with pole along .S,
denoted Q% (S). It’s clear that Q% (S) = Ox(Kx + 5).

One has the following exact sequence

0 — Ox(Kx) — Ox(Kx +5) — Os(Kx + S|s) — 0.
On the other hand, one has the Poincaré residue map
Q% (S) — ngl
with kernel Q% . Comparing these two sequences, one sees that Qg_l >~ Og(Kx +
S|s). Hence the canonical divisor Kg = Kx + S|s.
We now describe the Poincaré residue map. (cf. [G-H, p147]). The problem is

local in nature, it suffices to describe it locally. We may assume that on a small

open set U, S is defined by f. And let z1, .., z, be the local coordinates of U.

The sheaf Q% (S) on U can be written as w = g(z)dzfl(ig)'”/\d". Since S is non-

singular, then at least one of %fi # 0. The residue map send w to

e (_1)i_1g(z)d21 A Ndz A Ndy,

af )0z, lr=0-
This is independent of choice of ¢ since on S
_of of .. _
df = o1 dzy + ...+ o dz, = 0.

Another way to put it is that the residue map sends w to w’ such that w = % Aw'.
It’s clear that the w’ = 0 if and only if f(z)|g(z), which means that w is indeed

in OQ%.
O

Theorem 0.17 (Riemann-Roch theorem for divisors on surfaces). Let X be a non-
singular projective surface and D € Div(X) a divisor on X, then one has

X(X. D) = X(X.0x) + s D.(D ~ Kx).
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Proof. Write D ~ H; — H, with H; are non-singular very ample divisor. We
consider the sequences:

0— O(D)=0O(H, — Hy) — O(Hy) = Op,(Hy) — 0,
0— 0 — O(H;) — Oy, (Hy) — 0.
It’s clear that
X(X, D) = x(X, H1) — x(Hz2,On,(H1))
= X(X,Ox) + x(H1,On, (H1)) — x(H2, On, (H1)).
By Riemann-Roch on curves and adjunction formula,

1
X(H17 OHl (Hl)) = H1~H1 —|— 1-— g(Hl) = Hl-Hl =+ 1-— §(KX —|— Hl)-Hl,

1
X(Hg, OHQ(Hl)) = Hl.HQ =+ 1-— i(KX —+ HQ).HQ.
Collecting terms, one has
1 1
x(X,D) = x(X, OX)+§(H1 —Hs).(Hi—Hy— Kx) = x(X, OX)+§D.(D7KX).
O



