
Algebraic surfaces

Divisors

Remark 0.1. Let (A,m) be a Noetherian local ring with residue field k := A/m.
We said that A is a regular local ring if dimA = dimkm/m2. A ring is regular if
the localization at every maximal ideal is a regular local ring.

Remark 0.2. Let Y be an affine variety with coordinate ring A(Y ). And P ∈ Y
is a point. We say Y is non-singular at P if OP,Y is a regular local ring. We say
that Y is non-singular if it’s non-singular at every point.

We say that Y is normal at P if OP,Y is a integrally closed. We say that Y is
normal if it’s non-singular at every point.

In general, one has ”non-singular ⇒ normal ⇒ non-singular in codimension 1”.

Remark 0.3. An 1-dimensioanal regular local ring is a DVR. (cf. [Matsumura,
p.79] )

Exercise 0.4. Show that dimA2
C = 2.

Show that A2
k is non-singular.

Let X be a variety (maybe singular), one can define Div(X) to be the divisor
group. Let K(X) be the field of rational functions. If X is non-singular in codimen-
sion 1, (i.e. localization at height 1 prime gives a regular local ring. An equivalent
condition is that the singular locus has codim ≥ 2), then one can define

K(X)∗ → Div(X),

by div(f) =
∑

Y v(Y ). Where the sum is taking over all codimension 1 subvarieties.
The image is called principal divisors. Two divisor are said to be linearly equivalent
if they differ by a principal divisor. We define the divisor class group Cl(X) :=
Div/{principal divisors}.
Exercise 0.5. Prove that Cl(Pn) ∼= Z. Hence we can define the degree of a divisor
via Div(Pn) → Cl(Pn) → Z.

However, the divisor class group is in general not that simple. For example,
Cl(E) 6∼= Z.

Every divisor on a non-singular variety is locally principal, i.e. in a sufficiently
small neighborhood Uα, D|Uα = div(fα) for some rational function fα. We call fα

the local equation of D. Note that on Uα ∩ Uβ , fαf−1
β is regular. On the other

hand, if one has an open covering X = ∪Uα and a collection of (fα, Uα) such that
fαf−1

β is regular, then this defines a divisor.

Example 0.6. Consider X = P1 = U0 ∪ U1. Let t, s be local coordinate of U0, U1

respectively. One has s = t−1. Also K(X) = k(t) = k(s). Now consider 1-form dt
on U0, it’s clear that dt = −ds/s2. We have {(1, U0), (−1/s2, U1)} which represent
the 1-form. The divisor is −2[∞] which is the canonical divisor.

Example 0.7. Similarly, consider X = Pn = U0 ∪ ... ∪ Un. Conputatation shows
that KX = −(n + 1)H for some hyperplane H.

Remark 0.8. It could happen that difference choices of coordinates gives different
divisor. Indeed, they might give different divisor but still linear equivalent. One
should say that the canonical divisor is the equivalent class of the divisor defined
this way. Or sometimes we simply said that a divisor is a canonical divisor if it is
in the linear equivalent class.
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For a given a divisor D =
∑

niDi, we say D is effective, denoted D ≥ 0, if ni ≥ 0
for all i. The linear series of D is defined as

|D| := {D′ ∈ Div(X)|D′ ∼ D, D′ ≥ 0}.
We say that D is a reduced divisor if ni = 1 for all i, and D is irreducible if

ni = 1 for a unique i and nj = 0 otherwise, that is, D is a subvariety.
One of the purpose to realize a divisor as a collection of local equation is that it

enable us to define the pull-back of the divisor. Let f : X → Y be a morphism of two
non-singular varieties. Given D ∈ Div(Y ), it associate to a collection {(fα, Uα)}
for a small enough open covering {Uα}. This gives an open covering {f−1(Uα)}
on X and also a collection of local equations {(fα ◦ f, f−1(Uα))}. We get a divisor
on X, denoted f∗D. It’s clear that if D1 ∼ D2 then f∗D1 ∼ f∗D2 because
f∗D1 − f∗D2 = div(g ◦ f) if D1 −D2 = div(g).

Example 0.9. Consider the morphism f : P2 → P5 via f([a0, a1, a2]) = [a2
0, a0a1, a0a2, a

2
1, a1a2, a

2
2].

Let H be the hyperplane Z0 + Z1 = 0, what’s the divisor f∗H? Let H ′ be the hy-
perplane Z0 = 0, what’s the divisor f∗H ′?


