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1. Comapct Riemann surface and complex algebraic curves

This section is devoted to illustrate the connection between compact Riemann
surface and complex algebraic curve. We will basically work out the example of
elliptic curves and leave the general discussion for interested reader.

Let Λ ⊂ C be a lattice, that is, Λ = Zλ1 + Zλ2 with C = Rλ1 + Rλ2. Then an
elliptic curve E := C/Λ is an abelian group.

On the other hand, it’s a compact Riemann surface. One would like to ask
whether there are holomorphic function or meromorphic functions on E or not.

To this end, let π : C→ E be the natural map, which is a group homomorphism
(algebra), holomorphic function (complex analysis), and covering (topology). A
function f̄ on E gives a function f on C which is double periodic, i.e.,

f(z + λ1) = f(z), f(z + λ2) = f(z), ∀z ∈ C.

Recall that we have the following
Theorem 1.1 (Liouville). There is no non-constant bounded entire function.
Corollary 1.2. There is no non-constant holomorphic function on E.

Proof. First note that if f̄ is a holomorphic function on E, then it induces a double
periodic holomorphic function on C. It then suffices to claim that a a double
periodic holomorphic function on C is bounded.

To do this, consider D := {z = α1λ1 + α2λ2|0 ≤ αi ≤ 1}. The image of f is
f(D). However, D is compact, so is f(D) and hence f(D) is bounded. By Liouville
theorem, f is constant and hence so is f̄ . �

The next hope is to ask if there is a meromorphic function on E with only a
simple pole or not. The answer is NO, which can be proved by residue theorem.
Exercise 1.3. Prove that there is no non-zero meromorphic function on E with
only a simple pole

Then the next step is to look for functions with pole of order 2. Luckily, we have
one, which is the Weierstrass P-function,

P(z) := z−2 +
∑

ω∈Λ−{0}

((z − ω)−2 − ω−2).

And P ′ is a functions with pole of order 3. By direct computation, one sees that
Lemma 1.4.

P ′(z)2 = 4P(z)3 − g2P(z)− g3.
Where

g2 = 60
∑

ω∈Λ−{0}

ω−4

and
g3 = 140

∑

ω∈Λ−{0}

ω−6.

By considering the map E → C2 (or to P2) given by z̄ 7→ (P(z),P ′(z)), then one
realize the elliptic curve as a cubic curve in P2. The affine defining equation in C2

is
y2 = 4x3 − g2x− g3.

And the projective defining equation is

y2z = 4x3 − g2xz2 − g3z3.
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We therefore realize an elliptic curve as an algebraic curve.
Similar phenomena occurs for any compact Riemann surface. As the above

example suggested, the essential point is find enough functions and then determine
the algebraic relation between those functions. All these can be done for any
compact Riemann surface. Thus we have the following
Theorem 1.5. Any compact Riemann surface can be embedded into a projective
space as an algebraic curve.

To study functions more systematically, it’s natural to consider divisors.
Definition 1.6. Let X be a compact Riemann surface/ non-singular algebraic
curve, a divisor, denoted D =

∑

niPi, is a finite formal sum of points (codim=1).
The idea for divisors is to collect information on poles and zeros. We denote the

functions with prescribed poles and zero as

L(D) := {f ∈M(X)|div(f) + D ≥ 0}.

It’s clearly a vector space over the ground field and its dimension is denoted l(D).
Another important notion for divisor is the degree, which is

deg(D) :=
∑

ni.

Let’s look at the definition a little bit more. Given a meromorphic function (or
rational function) f(z), one can collect all the poles and zeros together with orders
at these points, give rise to a divisor div(f).
Example 1.7. Let X = C ∪ {∞} be the Riemann sphere. Let f1(z) = z, f2(z) =
1/(z − 1), f3(z) = z/(z − 1)2. By easy computation, one finds that div(f1) =
1[0]−1[∞] since it has a zero at 0 and a pole at ∞. Similarly, div(f2) = 1[∞]−1[1],
div(f3) = 1[0] + 1[∞]− 2[1].

Now fix a divisor D = 2[1]. What is L(D)? What does it mean? It is nothing
but the set of meromorphic functions with at most a pole of order 2 at [1] and no
other poles. More precisely,

L(D) = {g(z)/(z − 1)2|deg(g(z)) ≤ 2}.

Because if deg(g(z)) ≥ 3 then it gives a pole at ∞.
Now we can state the most important theorem for curves, the Riemann-Roch

theorem:
Theorem 1.8 (Riemann-Roch).

l(D)− l(K −D) = deg(D) + 1− g(X),

where K denotes the canonical divisor, and g(X) is the genus of the curve X.
We will turn to the discussion of canonical divisor more thoroughly later. At

this moment, it’s enough to know that it’s a divisor of degree 2g − 2 and for an
elliptic curve, K = 0.

Before we move on, we recall an easy fact:
Proposition 1.9. 1 Let D =

∑

niPi be a divisor. We said that D is effective if
ni ≥ 0 for all i, denoted D ≥ 0. Suppose now that D is an effective non-zero divisor
then L(D) = {0}.

Proof. Exercise. (Hint: prove that a holomorphic function on a compact Riemann
surface must be constant) �

We now redo the example of elliptic curve with the help of Riemann-Roch the-
orem. It’s a fact that the following argument also works for any compact Riemann
surface.
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Example 1.10. Let E = C/Λ be an elliptic curve. Then the genus is 1. Let 0̄ be
the image of π(0) in E. By Prop. 1.91 and K = 0, Riemann-Roch reads:

l(D) = deg(D).

The vector space L(k0̄) has a natural basis {1,P}, {1,P,P ′} respectively when
k = 2, 3. However, when k = 6, one finds that {1,P,P ′,P2,PP ′,P3,P ′2} must be
linearly depedent. Hence there must be a relation between them involving P3,P ′2.

On the other hand, for a complex algebraic curve X, it is non-singular if and
only if one can find a local chart at each point. Hence a non-singular complex
algebraic curve is a Riemann surface. If X is projective, then it’s a closed subset
in a compact set PN . Therefore it is compact.

We’ve seen that an elliptic curve E can be embedded into P2 as a non-singular
cubic curve. There is a group structure on E. How this group structure behave on
cubic curves? In fact there is a nice geometric correspondence via intersection.


