Advanced Algebra I Midterm Nov. 22, 2003

- (1) (15 pts) Let G be a group of order 500. Show that G is solvable. And give two examples of non-abelian groups of order 500 which are not isomorphic. (You need to verify that your groups are non-isomorphic.)
- (2) (15 pts) Let G be a solvable group and $N \triangleleft G$ be a normal subgroup. Show that G/N is solvable.
- (3) (10 pts) Let $\operatorname{Aut}(G)$ be the group of automorphisms of G. Prove that if $\operatorname{Aut}(G)$ is cyclic, then G is abelian.
- (4) (10 pts) Let F_q be a finite field of q elements. Determine the number of elements in GL(n, F_q),PGL(n, F_q),SL(n, F_q),PSL(n, F_q).
 (Perperly, if you don't know how to do it in general, you can

(Remark: if you don't know how to do it in general, you can work on the case that n = 2 to get partial credits)

- (5) (15 pts) Let G be a group of order p^3 , where p is a prime, and G is non-abelian.
 - (a) Show that the center $Z(G) \cong \mathbb{Z}_p$ and $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.
 - (b) Let H be a subgroup of order p^2 . Show that $Z(G) \subset H$ and H is normal.
- (6) (15 pts) Consider the group D_4 .
 - (a) Determine the character table of D_4 .
 - (b) Find the unique irreducible representation of degree 2 (up to isomorphism).
 - (c) Let ρ be an irreducible representation of degree 2. Decompose $\rho \otimes \rho$ into irreducible representations up to isomorphism.
- (7) (20 pts) suppose that G is a finite group with the following partial character table:

	(1)	(4)	(5)	(5)	(5)
	1	a	b	c	d
χ_1	1	1	1	$\begin{array}{c}1\\-1\\i\end{array}$	1
χ_2	1	1	-1	-1	1
χ_3	1	1	-i	i	-1
χ_4	1	1	i	-i	-1

- (a) Determine the missing row(s) of the character table.
- (b) Show that G has a normal subgroup of order 10. And determine the structure of this subgroup.
- (c) Determine the structure of Sylow 2-subgroups.
- (d) Determine the structure of G.