Advanced Algebra I

Gruop algebra

Recall that by a regular representation of G, we consider a vector space with basis $\left\{e_{s}\right\}_{s \in G}$. Let $\mathbb{C}[G]$ be the vector space with basis $\left\{e_{s}\right\}_{s \in G}$. One can have a natural ring structure on $\mathbb{C}[G]$ as following:

$$
\begin{gathered}
\sum_{s \in G} a_{s} e_{s}+\sum_{s \in G} b_{s} e_{s}=\sum_{s \in G}\left(a_{s}+b_{s}\right) e_{s}, \\
\left(\sum_{s \in G} a_{s} e_{s}\right)\left(\sum_{t \in G} b_{t} e_{t}\right)=\sum_{s, t} a_{s} b_{t} e_{s t}=\sum_{u \in G}\left(\sum_{s t=u} a_{s} b_{t}\right) e_{u} .
\end{gathered}
$$

We call $\mathbb{C}[G]$ the group algebra of G.
We claim that

$$
\mathbb{C}[G] \cong \prod_{i=1}^{r} M_{d_{i}}(\mathbb{C})
$$

Where r is the number of conjugacy classes of G and n_{i} is the degree of each irreducible representation.

First of all, the irreducible representation $\rho_{i}: G \rightarrow G L\left(W_{i}\right)$ induces an algebra homomorphism $\tilde{\rho}_{i}: \mathbb{C}[G] \rightarrow \operatorname{End}\left(W_{i}\right) \cong M_{n_{i}}(\mathbb{C})$ by $\tilde{\rho}_{i}\left(\sum_{s \in G} a_{s} e_{s}\right)=\sum_{s} a_{s} \rho_{i}(g)$. Hence one has

$$
\tilde{\rho}: \mathbb{C}[G] \rightarrow \prod_{i=1}^{r} \operatorname{End}\left(E_{i}\right) \cong \prod_{i=1}^{r} M_{d_{i}}(\mathbb{C})
$$

We first claim the $\tilde{\rho}$ is surjective. Suppose not, then there is a linear relation on the images. It follows that there is a relation on the coefficients of ρ_{i}. In particular, there is alinear erlation on χ_{i}. By the orthogonal property, this is impossible. Hence $\tilde{\rho}$ is surjective. However, they have the same dimension. Hence $\tilde{\rho}$ is an isomorphism.

Remark 0.1. $\mathbb{C}[G]$ is abelian if and only if G is abelian.
Our next goal it to determine the center $Z(C[G])$. In order to check $x=\sum a_{s} e_{s}$ is in center or not, we need to check for all $t \in G$,

$$
x=\sum_{s \in G} a_{s} e_{s}=e_{t}^{-1} x e_{t}=\sum_{s \in G} a_{s} e_{t^{-1} s t}=\sum_{s \in G} a_{t s t^{-1}} e_{s} .
$$

Note that $t^{-1} s t$ is conjugate to s. Thus, it's equivalent to have $a_{s}=a_{s^{\prime}}$ for all s^{\prime} conjugate to s.

A special case is that the above equation holds for $e_{c}:=\sum_{\sigma \in c} e_{\sigma}$, where c is a conjugacy class. Moreover, by our computation above, it's indeed that

$$
Z(\mathbb{C}[G])=\left\{\sum_{i=1}^{r} a_{i} e_{c_{i}} \mid a_{i} \in \mathbb{C}, c_{i} \text { runs through all conjugacy classes }\right\} .
$$

Example 0.2. Let $G=S_{3}$. Then the center has a basis $e_{(1)}, e_{(12)}+$ $e_{(13)}+e_{(23)}, e_{(123)}+e_{(132)}$

By viewing the isomorphism $\tilde{\rho}$, one sees that if $u=\sum a_{s} e_{s} \in$ $Z(\mathbb{C}[G])$, then $\tilde{\rho}_{i}(u)$ is of the form $\lambda_{i} I$ on the irreducible representation V_{i}. The value λ can be computed. Note that the coefficient a_{s} actually gives a class function on G because $a_{s}=a_{s^{\prime}}$ for s, s^{\prime} in the same conjugate class. We write it as $a: G \rightarrow \mathbb{C}$. By averaging process, one has a G-invariant $r \tilde{h} o_{i}=\sum_{s \in G} a_{s} \rho_{i}(s)$ linear transformation on V_{i}. Thus one has

$$
\lambda_{i}=\frac{1}{d_{i}} \operatorname{tr}\left(\sum_{s \in G} a_{s} \rho_{i}(s)\right)=\frac{1}{d_{i}} \sum a_{s} \chi_{i}(s) .
$$

Theorem 0.3. Keep notation as before, then one has

$$
d_{i} \mid g
$$

To prove this result, we need some facts on integral extension and algebraic integers.

Remark 0.4. (1) Let R be a commutative ring, one can view it as a \mathbb{Z}-module. An element $x \in R$ is said to be integral over \mathbb{Z} if x satisfies a monic integral polynomial in $\mathbb{Z}[x]$.
(2) In a commutative ring R, the elements which are integral over \mathbb{Z} forms a subring of R.
(3) If $R=\mathbb{C}$, then subring of elements which are integral over \mathbb{Z} is called ring of algebraic integers, denoted \mathcal{A}.
(4) $\mathcal{A} \cap \mathbb{Q}=\mathbb{Z}$.

Remark 0.5. The character $\chi(s)$ is an algebraic integer for all χ and all $s \in G$. This is because χ is sum of eigenvalues of a representation ρ. However, the eigenvalues are root of unity which are algebraic integers.

Proposition 0.6. Let $u=\sum a_{s} e_{s} \in Z(\mathbb{C}[G])$ such that $a_{s} \in \mathcal{A}$. Then u is integral over \mathbb{Z}.

Proof. Since $Z(\mathbb{C}[G])$ is generated by e_{c}. Let c_{1}, \ldots, c_{r} be all the conjugacy classes and let $a_{i}:=a_{s_{i}}$ for some $s_{i} \in c_{i}$. We first consider $R:=\oplus_{i=1}^{r} \mathbb{Z} e_{c_{i}}$. It's clear that R is a subring of $Z(\mathbb{C}[G])$ which is finitely generated over \mathbb{Z}. Now let $M=\mathbb{Z}\left[a_{1}, \ldots, a_{r}\right]$. Since a_{i} is integral over \mathbb{Z}, it follows that M is a finite \mathbb{Z}-module. One checks that $\mathbb{Z}[u] \subset \oplus_{i=1}^{r} M e_{c_{i}}$ and $\oplus_{i=1}^{r} M e_{c_{i}}$ is a finite \mathbb{Z}-module. Hence u is integral over \mathbb{Z}.
proof of the theorem. For each i, take $u=\sum_{s \in G} \chi\left(s^{-1}\right) e_{s}$. It's clear that $u \in Z(\mathbb{C}[G])$. By the previous Proposition, one has that u is integral over \mathbb{Z}.

Note that one has natural ring homomorphism

$$
\omega_{i}: Z(\mathbb{C}[G]) \rightarrow \mathbb{C},
$$

by sending u to λ_{i} the multiple of its i-component. It follows that the homomorphic image λ_{i} is an algebraic integer. One has now

$$
\lambda_{i}:=\frac{1}{d_{i}} \sum \chi_{i}\left(s^{-1}\right) \chi_{i}(s)=\frac{g}{d_{i}}<\chi_{i}, \chi_{i}>=\frac{g}{d_{i}} .
$$

Hence $\lambda_{i} \in \mathcal{A} \cap \mathbb{Q}=\mathbb{Z}$. It follows that $d_{i} \mid g$.

