
Advanced Algebra I

Gruop algebra

Recall that by a regular representation of G, we consider a vector
space with basis {es}s∈G. Let C[G] be the vector space with basis
{es}s∈G. One can have a natural ring structure on C[G] as following:

∑
s∈G

ases +
∑
s∈G

bses =
∑
s∈G

(as + bs)es,

(
∑
s∈G

ases)(
∑
t∈G

btet) =
∑
s,t

asbtest =
∑
u∈G

(
∑
st=u

asbt)eu.

We call C[G] the group algebra of G.
We claim that

C[G] ∼=
r∏

i=1

Mdi
(C).

Where r is the number of conjugacy classes of G and ni is the degree
of each irreducible representation.

First of all, the irreducible representation ρi : G → GL(Wi) in-
duces an algebra homomorphism ρ̃i : C[G] → End(Wi) ∼= Mni

(C) by
ρ̃i(

∑
s∈G ases) =

∑
s asρi(g). Hence one has

ρ̃ : C[G] →
r∏

i=1

End(Ei) ∼=
r∏

i=1

Mdi
(C).

We first claim the ρ̃ is surjective. Suppose not, then there is a lin-
ear relation on the images. It follows that there is a relation on the
coefficients of ρi. In particular, there is alinear erlation on χi. By the
orthogonal property, this is impossible. Hence ρ̃ is surjective. However,
they have the same dimension. Hence ρ̃ is an isomorphism.

Remark 0.1. C[G] is abelian if and only if G is abelian.

Our next goal it to determine the center Z(C[G]). In order to check
x =

∑
ases is in center or not, we need to check for all t ∈ G,

x =
∑
s∈G

ases = e−1
t xet =

∑
s∈G

aset−1st =
∑
s∈G

atst−1es.

Note that t−1st is conjugate to s. Thus, it’s equivalent to have as = as′

for all s′ conjugate to s.
A special case is that the above equation holds for ec :=

∑
σ∈c eσ,

where c is a conjugacy class. Moreover, by our computation above, it’s
indeed that

Z(C[G]) = {
r∑

i=1

aieci
|ai ∈ C, ci runs through all conjugacy classes}.
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Example 0.2. Let G = S3. Then the center has a basis e(1), e(12) +
e(13) + e(23), e(123) + e(132)

By viewing the isomorphism ρ̃, one sees that if u =
∑

ases ∈
Z(C[G]), then ρ̃i(u) is of the form λiI on the irreducible represen-
tation Vi. The value λ can be computed. Note that the coefficient as

actually gives a class function on G because as = as′ for s, s′ in the
same conjugate class. We write it as a : G → C. By averaging process,
one has a G-invariant ˜rhoi =

∑
s∈G asρi(s) linear transformation on Vi.

Thus one has

λi =
1

di

tr(
∑
s∈G

asρi(s)) =
1

di

∑
asχi(s).

Theorem 0.3. Keep notation as before, then one has

di|g.

To prove this result, we need some facts on integral extension and
algebraic integers.

Remark 0.4. (1) Let R be a commutative ring, one can view it as
a Z-module. An element x ∈ R is said to be integral over Z if
x satisfies a monic integral polynomial in Z[x].

(2) In a commutative ring R, the elements which are integral over
Z forms a subring of R.

(3) If R = C, then subring of elements which are integral over Z is
called ring of algebraic integers, denoted A.

(4) A ∩Q = Z.

Remark 0.5. The character χ(s) is an algebraic integer for all χ and
all s ∈ G. This is because χ is sum of eigenvalues of a representation ρ.
However, the eigenvalues are root of unity which are algebraic integers.

Proposition 0.6. Let u =
∑

ases ∈ Z(C[G]) such that as ∈ A. Then
u is integral over Z.

Proof. Since Z(C[G]) is generated by ec. Let c1, ..., cr be all the con-
jugacy classes and let ai := asi

for some si ∈ ci. We first consider
R := ⊕r

i=1Zeci
. It’s clear that R is a subring of Z(C[G]) which is

finitely generated over Z. Now let M = Z[a1, ..., ar]. Since ai is inte-
gral over Z, it follows that M is a finite Z-module. One checks that
Z[u] ⊂ ⊕r

i=1Meci
and ⊕r

i=1Meci
is a finite Z-module. Hence u is inte-

gral over Z. ¤
proof of the theorem. For each i, take u =

∑
s∈G χ(s−1)es. It’s clear

that u ∈ Z(C[G]). By the previous Proposition, one has that u is
integral over Z.

Note that one has natural ring homomorphism

ωi : Z(C[G]) → C,



3

by sending u to λi the multiple of its i-component. It follows that the
homomorphic image λi is an algebraic integer. One has now

λi :=
1

di

∑
χi(s

−1)χi(s) =
g

di

< χi, χi >=
g

di

.

Hence λi ∈ A ∩Q = Z. It follows that di|g. ¤


