Advanced Algebra I

GRUOP ALGEBRA

Recall that by a regular representation of G, we consider a vector
space with basis {es}scq. Let C[G| be the vector space with basis
{es}sec. One can have a natural ring structure on C[G] as following:

Zases + stes = Z(as + bs)esa
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(Z ases)(z bier) = Z asbeq = Z(Z ashy)ey.
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We call C[G] the group algebra of G.
We claim that

ClG] = H M, (C).

Where r is the number of conjugacy classes of G and n; is the degree
of each irreducible representation.

First of all, the irreducible representation p; : G — GL(W;) in-
duces an algebra homomorphism p; : C[G] — End(W;) = M,,(C) by
Pi(D e @ses) = D aspi(g). Hence one has

p:ClG] — H End(E;) = H M, (C).

We first claim the p is surjective. Suppose not, then there is a lin-
ear relation on the images. It follows that there is a relation on the
coefficients of p;. In particular, there is alinear erlation on y;. By the
orthogonal property, this is impossible. Hence p is surjective. However,
they have the same dimension. Hence p is an isomorphism.

Remark 0.1. C[G] is abelian if and only if G is abelian.

Our next goal it to determine the center Z(C[G]). In order to check
x =) ase, is in center or not, we need to check for all t € G,

Tr = g Ag€s = et_lmet = E AgCi—1g = g Qpst—1€5.

seG seG seG

Note that ¢~!st is conjugate to s. Thus, it’s equivalent to have a; = ay
for all s’ conjugate to s.

A special case is that the above equation holds for e. := > __ e,
where ¢ is a conjugacy class. Moreover, by our computation above, it’s
indeed that

Z(C[G]) = {Z a;ee,|a; € C,¢; runs through all conjugacy classes}.
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Example 0.2. Let G = S3. Then the center has a basis ey, e(12) +
€(13) T €(23), €(123) T €(132)

By viewing the isomorphism p, one sees that if u = > ases €
Z(C|[G]), then p;(u) is of the form A, on the irreducible represen-
tation V;. The value A can be computed. Note that the coefficient a,
actually gives a class function on G because as; = ay for s,s" in the
same conjugate class. We write it as a : G — C. By averaging process,
one has a G-invariant rho; = ) aspi(s) linear transformation on V.
Thus one has

5= (Y an(s) = 5 3 anls)

Theorem 0.3. Keep notation as before, then one has

To prove this result, we need some facts on integral extension and
algebraic integers.

Remark 0.4. (1) Let R be a commutative ring, one can view it as
a Z-module. An element x € R is said to be integral over Z if
x satisfies a monic integral polynomial in 7 [x].
(2) In a commutative ring R, the elements which are integral over
Z forms a subring of R.
(3) If R = C, then subring of elements which are integral over Z is
called ring of algebraic integers, denoted A.

4) ANQ=Z.

Remark 0.5. The character x(s) is an algebraic integer for all x and
all s € G. This is because x is sum of eigenvalues of a representation p.
However, the eigenvalues are root of unity which are algebraic integers.

Proposition 0.6. Let u =) ases € Z(C[G]) such that as € A. Then
u 18 integral over Z.

Proof. Since Z(C[G]) is generated by e.. Let ¢y, ...,c, be all the con-
jugacy classes and let a; := a,, for some s; € ¢;. We first consider
R = @]_,Ze.. It's clear that R is a subring of Z(C[G]) which is
finitely generated over Z. Now let M = Zlay, ..., a,]. Since a; is inte-
gral over Z, it follows that M is a finite Z-module. One checks that
Zu) C ®i_ Me,, and ®]_,Me,, is a finite Z-module. Hence u is inte-
gral over Z. U

proof of the theorem. For each i, take u = > _, x(s7')es. It’s clear
that u € Z(C[G]). By the previous Proposition, one has that wu is
integral over Z.

Note that one has natural ring homomorphism

w; : Z(C[G]) — C,
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by sending u to \; the multiple of its i-component. It follows that the
homomorphic image \; is an algebraic integer. One has now

_ 1 —1 _ g g
A= E@'ZM(S xi(s) = . < Xis Xi >= d

Hence \; € ANQ = Z. Tt follows that d;|g. O



