
Advanced Algebra I

representation of finite groups

Another interesting realization of the tetrahedral group T is done by
choose coordinates such that ±ei are those midpoint of 6 edges. Then
one can express T as a finite subgroup of GL(3,R). This is an example
of a representation.

Definition 0.1. A n-dimensional matrix representation of a group G
is a homomorphism

R : G → GL(n, F ),

where F is a field. A representation is faithful if R is injective. And
we write Rg for R(g)

It’s essential to work without fixing a basis. Thus we introduce the
concept of representation of a group on a finite dimensional vector space
V .

Definition 0.2. By a representation of G on V , we mean a homomor-
phism ρ : G → GL(V ), where GL(V ) denote the group of invertible
linear transformations on V . We write ρg for ρ(g)

Remark 0.3. By fixing a basis β of V , one has

β : GL(V ) → GL(n, F )

T 7→ matrix of T.

And one has a matrix representation R := β ◦ ρ.
Furthermore, if a change of basis is given by a matric P , then one

has the conjugate representation R′ = PRP−1, that is R′
g = PRgP

−1

for all g ∈ G.

Remark 0.4. We would like to remark that the concept of a linear
representation of G on V is equivalent to G acts on V linearly. More
precisely, G acts on the vector space V and the action satisfying

g(v + v′) = gv + gv′, g(cv) = cg(v)

for all g ∈ G, v, v′ ∈ V and c ∈ F .

Definition 0.5. Let ρ, ρ′ be two representations of G on V, V ′. They
are said to be isomorphic if there is an isomorphism of τ : V → V ′

which is compatible with ρ and ρ′. That is,

τρs(v) = ρ′sτ(v),

for all s ∈ G, v ∈ V .

Example 0.6. A representation of degree 1 is a homomorphism R :
G → C∗. Since every element has finite order, Rg is a root of unity.
In particular, |Rg| = 1.
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Example 0.7 (Regular representation). Let G be a finite group of
order g and let V be a vector space with basis {et}t∈G. For s ∈ G, let
Rs be the linear map of V to V which maps et to est. This is called the
regular representation of G.

Note that es = Rs(e1) for all s ∈ G. Hence the image of e1 ∈ V
form a basis. On the other hand, if τ : G → W is a representation
with the property that there is a v ∈ W such that {τs(v)}s∈G forms a
basis. Then W is isomorphic to the regular representation. This is the
case by considering τ : V → W with τ(es) = ρs(v).

More generally, if G acts on a finite set X, the one can have a
representation similarly on the vector space V with basis X. This is
called the permutation representation associated to X.

Let ρ, ρ′ be two representations of G on V, V ′, then one can define ρ⊕
ρ′, ρ⊗ρ′ naturally. Note that if degree of ρ and ρ′ are d, d′ respectively,
then degree of ρ⊕ ρ′ is d + d′ and degree of ρ⊗ ρ′ is dd′.

Definition 0.8. V is irreducible representation if V is not a direct sum
of two representation non-trivially.

One might ask whether a representation is irreducible or not. We
threrefore introduce the G-invariant subspace as we did in linear alge-
bra.

Definition 0.9. Let ρ : G → GL(V ) be a representation. A vector
subspace W of V is said to be a G-invariant subspace if ρs(W ) ⊂ W
for all s ∈ G. It’s clear that the restriction of G action on V to W
give a representation of G on W , which is called the subrepresentation
of V .

Theorem 0.10 (Maschke’s Theorem). Every representation of a finite
is a direct sum of irreducible representations.

Proof. It suffices to prove that for any G-invariant subspace W ⊂ V .
There is a G-invariant complement of W . By a complement of W , we
mean a subspace W ′ such that W ∩W ′ = {e}, and W + W ′ = V .

We first pick any complement W ′. Then V = W ⊕W ′. Let p : V →
W be the projection. We are going to modify W ′ to get a G-invariant
complement.

To this end, we average p over G to get

p0 :=
1

g

∑
t∈G

ρtpρ
−1
t ,

where g = |G|.
One checks that p0 : V → W and p0(w) = w for all w ∈ W . That

is, p0 : V → W is a projection.
Let W0 := ker(p0). We check that W0 is G-invariant since

ρsp0ρ
−1
s = p0
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for all s ∈ G. It follows that if x ∈ W0, p0ρs(x) = ρs(p0(x)) = 0, which
shows that ρs(x) ∈ W0.

This proves that the representation on V is isomorphic to W ⊕W0.
¤

Remark 0.11. A matrix over C of finite order is diagonalizable. Hence
every matrix representation over the field C is diagonalizable. We
therefore assume the field to be the complex number field.

Moreover, let λ be an eigenvalue of ρs for some s. Then |λ| = 1.

Definition 0.12. Let ρ : G → GL(V ) be a linear representation on
the vector space V . We define the character as χρ := Tr ◦ ρ : G → C.

Proposition 0.13. Let χ be the character of ρ : G → GL(V ).

(1) χ(1) = n := dimV ,

(2) χ(s−1) = χ(s) for all s ∈ G,
(3) χ(tst−1) = χ(s) for all s, t ∈ G.
(4) if χ′ is the character of another representation ρ′, then the char-

acter of ρ⊕ ρ′ is χ + χ′.

One can define a hermitian dot product on characters as

< χ, χ′ >:=
1

g

∑
s∈G

χ(s)χ′(s).

The main theorem for character is the following:

Theorem 0.14. Let G be a group of order g, and let ρ1, ... represent
the isomorphism classes of irreducible representations of G. Let χi be
the character of ρi for each i.

(1) Orthogonality Relations:

<< χi, χj >= 0if i 6= j,

< χi, χi >= 1 for each i.

(2) The number of isomorphism classes of irreducible representa-
tions of G is the same as the number of conjugacy classes of G.
(denote it by r).

(3) Let di be the degree of ρi, then di|g and

g =
r∑

i=1

d2
i .

Example 0.15. Consider G = D4. It’s clear that r = 5. Hence it’s
only possible to have d1 = 2, d2 = ... = d5 = 1.


