Advanced Algebra I

REPRESENTATION OF FINITE GROUPS

Another interesting realization of the tetrahedral group T is done by choose coordinates such that $\pm e_i$ are those midpoint of 6 edges. Then one can express T as a finite subgroup of $GL(3, \mathbb{R})$. This is an example of a representation.

Definition 0.1. A n-dimensional matrix representation of a group G is a homomorphism

$$R: G \to GL(n, F),$$

where F is a field. A representation is faithful if R is injective. And we write R_g for R(g)

It's essential to work without fixing a basis. Thus we introduce the concept of representation of a group on a finite dimensional vector space V.

Definition 0.2. By a representation of G on V, we mean a homomorphism $\rho : G \to GL(V)$, where GL(V) denote the group of invertible linear transformations on V. We write ρ_g for $\rho(g)$

Remark 0.3. By fixing a basis β of V, one has

$$\beta: GL(V) \to GL(n, F)$$
$$T \mapsto matrix of T.$$

And one has a matrix representation $R := \beta \circ \rho$.

Furthermore, if a change of basis is given by a matric P, then one has the conjugate representation $R' = PRP^{-1}$, that is $R'_g = PR_gP^{-1}$ for all $g \in G$.

Remark 0.4. We would like to remark that the concept of a linear representation of G on V is equivalent to G acts on V linearly. More precisely, G acts on the vector space V and the action satisfying

$$g(v + v') = gv + gv', \quad g(cv) = cg(v)$$

for all $g \in G$, $v, v' \in V$ and $c \in F$.

Definition 0.5. Let ρ, ρ' be two representations of G on V, V'. They are said to be isomorphic if there is an isomorphism of $\tau : V \to V'$ which is compatible with ρ and ρ' . That is,

$$\tau \rho_s(v) = \rho'_s \tau(v),$$

for all $s \in G, v \in V$.

Example 0.6. A representation of degree 1 is a homomorphism R: $G \to \mathbb{C}^*$. Since every element has finite order, R_g is a root of unity. In particular, $|R_g| = 1$.

Example 0.7 (Regular representation). Let G be a finite group of order g and let V be a vector space with basis $\{e_t\}_{t\in G}$. For $s \in G$, let R_s be the linear map of V to V which maps e_t to e_{st} . This is called the regular representation of G.

Note that $e_s = R_s(e_1)$ for all $s \in G$. Hence the image of $e_1 \in V$ form a basis. On the other hand, if $\tau : G \to W$ is a representation with the property that there is a $v \in W$ such that $\{\tau_s(v)\}_{s \in G}$ forms a basis. Then W is isomorphic to the regular representation. This is the case by considering $\tau : V \to W$ with $\tau(e_s) = \rho_s(v)$.

More generally, if G acts on a finite set X, the one can have a representation similarly on the vector space V with basis X. This is called the permutation representation associated to X.

Let ρ, ρ' be two representations of G on V, V', then one can define $\rho \oplus \rho', \rho \otimes \rho'$ naturally. Note that if degree of ρ and ρ' are d, d' respectively, then degree of $\rho \oplus \rho'$ is d + d' and degree of $\rho \otimes \rho'$ is dd'.

Definition 0.8. V is irreducible representation if V is not a direct sum of two representation non-trivially.

One might ask whether a representation is irreducible or not. We threefore introduce the G-invariant subspace as we did in linear algebra.

Definition 0.9. Let $\rho : G \to GL(V)$ be a representation. A vector subspace W of V is said to be a G-invariant subspace if $\rho_s(W) \subset W$ for all $s \in G$. It's clear that the restriction of G action on V to W give a representation of G on W, which is called the subrepresentation of V.

Theorem 0.10 (Maschke's Theorem). Every representation of a finite is a direct sum of irreducible representations.

Proof. It suffices to prove that for any *G*-invariant subspace $W \subset V$. There is a *G*-invariant complement of *W*. By a complement of *W*, we mean a subspace W' such that $W \cap W' = \{e\}$, and W + W' = V.

We first pick any complement W'. Then $V = W \oplus W'$. Let $p: V \to W$ be the projection. We are going to modify W' to get a G-invariant complement.

To this end, we average p over G to get

$$p_0 := \frac{1}{g} \sum_{t \in G} \rho_t p \rho_t^{-1},$$

where g = |G|.

One checks that $p_0: V \to W$ and $p_0(w) = w$ for all $w \in W$. That is, $p_0: V \to W$ is a projection.

Let $W_0 := ker(p_0)$. We check that W_0 is G-invariant since

$$\rho_s p_0 \rho_s^{-1} = p_0$$

for all $s \in G$. It follows that if $x \in W_0$, $p_0\rho_s(x) = \rho_s(p_0(x)) = 0$, which shows that $\rho_s(x) \in W_0$.

This proves that the representation on V is isomorphic to $W \oplus W_0$.

Remark 0.11. A matrix over \mathbb{C} of finite order is diagonalizable. Hence every matrix representation over the field \mathbb{C} is diagonalizable. We therefore assume the field to be the complex number field.

Moreover, let λ be an eigenvalue of ρ_s for some s. Then $|\lambda| = 1$.

Definition 0.12. Let $\rho : G \to GL(V)$ be a linear representation on the vector space V. We define the character as $\chi_{\rho} := Tr \circ \rho : G \to \mathbb{C}$.

Proposition 0.13. Let χ be the character of $\rho : G \to GL(V)$.

- (1) $\chi(1) = n := \dim V$,
- (2) $\chi(s^{-1}) = \overline{\chi(s)}$ for all $s \in G$,
- (3) $\chi(tst^{-1}) = \chi(s)$ for all $s, t \in G$.
- (4) if χ' is the character of another representation ρ' , then the character of $\rho \oplus \rho'$ is $\chi + \chi'$.

One can define a hermitian dot product on characters as

$$<\chi,\chi'>:=rac{1}{g}\sum_{s\in G}\overline{\chi(s)}\chi'(s).$$

The main theorem for character is the following:

Theorem 0.14. Let G be a group of order g, and let $\rho_1, ...$ represent the isomorphism classes of irreducible representations of G. Let χ_i be the character of ρ_i for each i.

(1) Orthogonality Relations:

$$<<\chi_i,\chi_j>=0$$
 if $i\neq j$,

$$\langle \chi_i, \chi_i \rangle = 1$$
 for each *i*.

- (2) The number of isomorphism classes of irreducible representations of G is the same as the number of conjugacy classes of G. (denote it by r).
- (3) Let d_i be the degree of ρ_i , then $d_i|g$ and

$$g = \sum_{i=1}^r d_i^2.$$

Example 0.15. Consider $G = D_4$. It's clear that r = 5. Hence it's only possible to have $d_1 = 2, d_2 = ... = d_5 = 1$.