Advanced Algebra I

REPRESENTATION OF FINITE GROUPS

Another interesting realization of the tetrahedral group T is done by choose coordinates such that $\pm e_{i}$ are those midpoint of 6 edges. Then one can express T as a finite subgroup of $G L(3, \mathbb{R})$. This is an example of a representation.

Definition 0.1. A n-dimensional matrix representation of a group G is a homomorphism

$$
R: G \rightarrow G L(n, F)
$$

where F is a field. A representation is faithful if R is injective. And we write R_{g} for $R(g)$

It's essential to work without fixing a basis. Thus we introduce the concept of representation of a group on a finite dimensional vector space V.

Definition 0.2. By a representation of G on V, we mean a homomorphism $\rho: G \rightarrow G L(V)$, where $G L(V)$ denote the group of invertible linear transformations on V. We write ρ_{g} for $\rho(g)$

Remark 0.3. By fixing a basis β of V, one has

$$
\begin{gathered}
\beta: G L(V) \rightarrow G L(n, F) \\
T \mapsto \text { matrix of } T .
\end{gathered}
$$

And one has a matrix representation $R:=\beta \circ \rho$.
Furthermore, if a change of basis is given by a matric P, then one has the conjugate representation $R^{\prime}=P R P^{-1}$, that is $R_{g}^{\prime}=P R_{g} P^{-1}$ for all $g \in G$.

Remark 0.4. We would like to remark that the concept of a linear representation of G on V is equivalent to G acts on V linearly. More precisely, G acts on the vector space V and the action satisfying

$$
g\left(v+v^{\prime}\right)=g v+g v^{\prime}, \quad g(c v)=c g(v)
$$

for all $g \in G, v, v^{\prime} \in V$ and $c \in F$.
Definition 0.5. Let ρ, ρ^{\prime} be two representations of G on V, V^{\prime}. They are said to be isomorphic if there is an isomorphism of $\tau: V \rightarrow V^{\prime}$ which is compatible with ρ and ρ^{\prime}. That is,

$$
\tau \rho_{s}(v)=\rho_{s}^{\prime} \tau(v),
$$

for all $s \in G, v \in V$.
Example 0.6. A representation of degree 1 is a homomorphism R : $G \rightarrow \mathbb{C}^{*}$. Since every element has finite order, R_{g} is a root of unity. In particular, $\left|R_{g}\right|=1$.

Example 0.7 (Regular representation). Let G be a finite group of order g and let V be a vector space with basis $\left\{e_{t}\right\}_{t \in G}$. For $s \in G$, let R_{s} be the linear map of V to V which maps e_{t} to $e_{s t}$. This is called the regular representation of G.

Note that $e_{s}=R_{s}\left(e_{1}\right)$ for all $s \in G$. Hence the image of $e_{1} \in V$ form a basis. On the other hand, if $\tau: G \rightarrow W$ is a representation with the property that there is a $v \in W$ such that $\left\{\tau_{s}(v)\right\}_{s \in G}$ forms a basis. Then W is isomorphic to the regular representation. This is the case by considering $\tau: V \rightarrow W$ with $\tau\left(e_{s}\right)=\rho_{s}(v)$.

More generally, if G acts on a finite set X, the one can have a representation similarly on the vector space V with basis X. This is called the permutation representation associated to X.

Let ρ, ρ^{\prime} be two representations of G on V, V^{\prime}, then one can define $\rho \oplus$ $\rho^{\prime}, \rho \otimes \rho^{\prime}$ naturally. Note that if degree of ρ and ρ^{\prime} are d, d^{\prime} respectively, then degree of $\rho \oplus \rho^{\prime}$ is $d+d^{\prime}$ and degree of $\rho \otimes \rho^{\prime}$ is $d d^{\prime}$.

Definition 0.8. V is irreducible representation if V is not a direct sum of two representation non-trivially.

One might ask whether a representation is irreducible or not. We threrefore introduce the G-invariant subspace as we did in linear algebra.

Definition 0.9. Let $\rho: G \rightarrow G L(V)$ be a representation. A vector subspace W of V is said to be a G-invariant subspace if $\rho_{s}(W) \subset W$ for all $s \in G$. It's clear that the restriction of G action on V to W give a representation of G on W, which is called the subrepresentation of V.

Theorem 0.10 (Maschke's Theorem). Every representation of a finite is a direct sum of irreducible representations.

Proof. It suffices to prove that for any G-invariant subspace $W \subset V$. There is a G-invariant complement of W. By a complement of W, we mean a subspace W^{\prime} such that $W \cap W^{\prime}=\{e\}$, and $W+W^{\prime}=V$.

We first pick any complement W^{\prime}. Then $V=W \oplus W^{\prime}$. Let $p: V \rightarrow$ W be the projection. We are going to modify W^{\prime} to get a G-invariant complement.

To this end, we average p over G to get

$$
p_{0}:=\frac{1}{g} \sum_{t \in G} \rho_{t} p \rho_{t}^{-1},
$$

where $g=|G|$.
One checks that $p_{0}: V \rightarrow W$ and $p_{0}(w)=w$ for all $w \in W$. That is, $p_{0}: V \rightarrow W$ is a projection.

Let $W_{0}:=\operatorname{ker}\left(p_{0}\right)$. We check that W_{0} is G-invariant since

$$
\rho_{s} p_{0} \rho_{s}^{-1}=p_{0}
$$

for all $s \in G$. It follows that if $x \in W_{0}, p_{0} \rho_{s}(x)=\rho_{s}\left(p_{0}(x)\right)=0$, which shows that $\rho_{s}(x) \in W_{0}$.

This proves that the representation on V is isomorphic to $W \oplus W_{0}$.

Remark 0.11. A matrix over \mathbb{C} of finite order is diagonalizable. Hence every matrix representation over the field \mathbb{C} is diagonalizable. We therefore assume the field to be the complex number field.

Moreover, let λ be an eigenvalue of ρ_{s} for some s. Then $|\lambda|=1$.
Definition 0.12. Let $\rho: G \rightarrow G L(V)$ be a linear representation on the vector space V. We define the character as $\chi_{\rho}:=\operatorname{Tr} \circ \rho: G \rightarrow \mathbb{C}$.

Proposition 0.13. Let χ be the character of $\rho: G \rightarrow G L(V)$.
(1) $\chi(1)=n:=\operatorname{dim} V$,
(2) $\chi\left(s^{-1}\right)=\overline{\chi(s)}$ for all $s \in G$,
(3) $\chi\left(t s t^{-1}\right)=\chi(s)$ for all $s, t \in G$.
(4) if χ^{\prime} is the character of another representation ρ^{\prime}, then the character of $\rho \oplus \rho^{\prime}$ is $\chi+\chi^{\prime}$.

One can define a hermitian dot product on characters as

$$
<\chi, \chi^{\prime}>:=\frac{1}{g} \sum_{s \in G} \overline{\chi(s)} \chi^{\prime}(s) .
$$

The main theorem for character is the following:
Theorem 0.14. Let G be a group of order g, and let ρ_{1}, \ldots represent the isomorphism classes of irreducible representations of G. Let χ_{i} be the character of ρ_{i} for each i.
(1) Orthogonality Relations:

$$
\begin{aligned}
& \ll \chi_{i}, \chi_{j}>=0 \text { if } i \neq j \\
& <\chi_{i}, \chi_{i}>=1 \text { for each } i
\end{aligned}
$$

(2) The number of isomorphism classes of irreducible representations of G is the same as the number of conjugacy classes of G. (denote it by r).
(3) Let d_{i} be the degree of ρ_{i}, then $d_{i} \mid g$ and

$$
g=\sum_{i=1}^{r} d_{i}^{2}
$$

Example 0.15. Consider $G=D_{4}$. It's clear that $r=5$. Hence it's only possible to have $d_{1}=2, d_{2}=\ldots=d_{5}=1$.

