Advanced Algebra I

REPRESENTATION OF FINITE GROUPS

Another interesting realization of the tetrahedral group 7' is done by
choose coordinates such that +e; are those midpoint of 6 edges. Then
one can express T as a finite subgroup of GL(3,R). This is an example
of a representation.

Definition 0.1. A n-dimensional matriz representation of a group G
s a homomorphism

R:G— GL(n,F),
where F is a field. A representation is faithful if R is injective. And
we write R, for R(g)

It’s essential to work without fixing a basis. Thus we introduce the

concept of representation of a group on a finite dimensional vector space
V.

Definition 0.2. By a representation of G on V', we mean a homomor-
phism p : G — GL(V), where GL(V') denote the group of invertible
linear transformations on V. We write p, for p(g)

Remark 0.3. By fixing a basis 3 of V', one has
B:GL(V)— GL(n, F)
T — matriz of T.

And one has a matrix representation R := 3o p.

Furthermore, if a change of basis is given by a matric P, then one
has the conjugate representation R = PRP™1, that is R, = PR, P!
forallg e G.

Remark 0.4. We would like to remark that the concept of a linear
representation of G on V' is equivalent to G acts on V' linearly. More
precisely, G acts on the vector space V' and the action satisfying
glv+0') =gv+gv',  g(ew) = cg(v)

forallge G, v,v' €V and c € F.
Definition 0.5. Let p,p’ be two representations of G on V,V'. They
are said to be isomorphic if there is an isomorphism of 7 : V. — V'
which is compatible with p and p'. That is,

7ps(v) = p7(v),
foralls e GiveV.
Example 0.6. A representation of degree 1 is a homomorphism R :

G — C*. Since every element has finite order, Ry is a root of unity.
In particular, |R,| = 1.
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Example 0.7 (Regular representation). Let G be a finite group of
order g and let V' be a vector space with basis {e;}1eq. For s € G, let
R be the linear map of V' to V' which maps e; to es. This is called the
reqular representation of G.

Note that e; = Rg(ey) for all s € G. Hence the image of ey € V
form a basis. On the other hand, if T : G — W 1s a representation
with the property that there is a v € W such that {75(v)}seq forms a
basis. Then W is isomorphic to the reqular representation. This is the
case by considering T : V. — W with 1(es) = ps(v).

More generally, if G acts on a finite set X, the one can have a
representation similarly on the vector space V' with basis X. This is
called the permutation representation associated to X.

Let p, p' be two representations of G on V, V', then one can define p&®
0, p®p' naturally. Note that if degree of p and p’ are d, d’ respectively,
then degree of p @ p' is d + d’ and degree of p ® p’ is dd'.

Definition 0.8. V is irreducible representation if V' is not a direct sum
of two representation non-trivially.

One might ask whether a representation is irreducible or not. We
threrefore introduce the G-invariant subspace as we did in linear alge-
bra.

Definition 0.9. Let p : G — GL(V) be a representation. A wvector
subspace W of V' is said to be a G-invariant subspace if ps(W) C W
for all s € G. It’s clear that the restriction of G action on V to W
give a representation of G on W, which is called the subrepresentation

of V.

Theorem 0.10 (Maschke’s Theorem). Every representation of a finite
15 a direct sum of 1rreducible representations.

Proof. 1t suffices to prove that for any G-invariant subspace W C V.
There is a G-invariant complement of W. By a complement of W, we
mean a subspace W’ such that W N W' = {e}, and W+ W' =V.

We first pick any complement W/. Then V=W & W’'. Let p: V —
W be the projection. We are going to modify W’ to get a G-invariant
complement.

To this end, we average p over GG to get

1 -
Do = Ezptppt g

teG
where g = |G].
One checks that py : V' — W and po(w) = w for all w € W. That
is, po : V. — W is a projection.
Let Wy := ker(po). We check that W) is G-invariant since

psPopy - = Po
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for all s € G. It follows that if € Wy, pops(z) = ps(po(x)) = 0, which
shows that ps(z) € W.

This proves that the representation on V' is isomorphic to W & Wj,.
O

Remark 0.11. A matrixz over C of finite order is diagonalizable. Hence
every matriz representation over the field C is diagonalizable. We
therefore assume the field to be the complex number field.

Moreover, let A be an eigenvalue of ps for some s. Then |A| = 1.

Definition 0.12. Let p : G — GL(V) be a linear representation on
the vector space V. We define the character as x, :==Trop: G — C.

Proposition 0.13. Let x be the character of p: G — GL(V).
(1) x(1) =n :=dimV,
(2) x(s7Y) = x(s) for all s € G,
(3) x(tst™h) = x(s) for all s,t € G.
(4) if X' is the character of another representation p', then the char-
acter of p@ p' is x + X'

One can define a hermitian dot product on characters as

<xx = ZX

SEG
The main theorem for character is the following:

Theorem 0.14. Let G be a group of order g, and let py, ... represent
the isomorphism classes of irreducible representations of G. Let x; be
the character of p; for each 1.

(1) Orthogonality Relations:
<< Xi, xg >=0if i # J,
< Xi,Xi >= 1 for each i.
(2) The number of isomorphism classes of irreducible representa-
tions of G is the same as the number of conjugacy classes of G.

(denote it by r).
(3) Let d; be the degree of p;, then d;|g and

g= i d?.
i=1

Example 0.15. Consider G = Dy. It’s clear that r = 5. Hence it’s
only possible to have dy = 2,dy = ... = ds = 1.



