Advanced Algebra I

GROUP ACTION

We will define the group action and illustrate some previous known
theorem from group action point of view.

Definition 0.1. We say a group G acts on a set S, or S is a G-set,
if there is function o : G X S — S, usually denoted a(g,z) = gz,
compatible with group structure, i.e. satisfying:
(1) let e € G be the idetity, then ex = x for all x € S.
(2) g(hx) = (gh)x for allg,h € G, x € S.
By the definition, it’s clear to see that if y = gz, then z = g~ lv.
Because z = ex = (¢ 'g)x = g7 (gz) = g7 'y.
Moreover, one can see that given a group action a : G x § — §'is

equivalent to have a group homomorphism & : G — A(S), where A(S)
denote the group of bijections on S.

Exercise 0.2. Check the equivalence of o and .

An application is to take a finite group G of order n, and take S = G.
Then the group multiplication gives a group action. Thus we have a
group homomorphism

a:G— AG) = 8,.

One can check that in this case & is an injection. Thus we have the
Cayley’s theorem.
We now introduce two important notions:

Definition 0.3. Suppose G acts on S. For x € S, the orbit of x is
defined as

O, = {gz|g € G}.
And the stabilizer of x is defined as
G, :={g € Glgz = z}.
Then one has the following

Proposition 0.4.
|G| = (O] - |Gel.

Sketch. Consider S, := {g € G|gz = y}. Then G is a disjoint union of

Sy for all y € O,. Furthermore, fix a g such that y = gz, then one has
Sy = gG,. Thus

G| = [ Uyeo, Syl = Z |G| = O] - |Gal.
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By applying this to the situation that H < G is a subgroup and take
S = G/H with the action G x G/H — G/H via a(g,xH) = grH. For
H € S, the stabilizer is H, and the orbit is G/H. Thus we have

G| = |G/H]-[H],

which is the Lagrange’s theorem.

Another way of counting is to consider the decomposition of S into
disjoint union of orbits. Note that if O, = O, if and only if y € O,.
Thus for convenience, we pick a representative in each orbit and let 1
be a set of representatives of orbits. We have:

S — Uxejox.
In particular,
S| =" 10.].
zel

This simple minded equation actually give various nice application.
We have the following natural applications.

Example 0.5 (translation). Let G be a group. One can consider the
action G x G — G by a(g,x) = gr. Such action is called translation.
More generally, let H < G be a subgroup. Then one has translation
Hx G — G by (h,r) = hx. Then |S| = > .;|O0.| gives Lagrange
theorem again.

Example 0.6 (conjugation). Let G be a group. One can consider
the action G x G — G by a(g,z) = grg~'. Such action is called
conjugation. For a x € G, G, = C(x), the centralizer. And O, = {z}
if and only if x € Z(G), the center of G. So, for G finite, the equation

S| = 1er |Os| now gives
Gl =>_1GI/IC()!
zel
Which s the class equation.
The class equation (we mean the general form [S| = Y _,|0,]) is
very useful if the group is a finite p-group. By a finite p-group, we

mean a group G with |G| = p™ for some n > 0. Consider now G is a
finite p group acting on S. Let

So :={z € S|gzr = x,VYg € G}.
Then the class equation can be written as
S| =150l + > 1Ol
zel,zgSo
One has the following
Lemma 0.7. Let G be a finite p-group. Keep the notation as above,

then
S| =1So|  (mod p).



Proof. If x & Sy, then 1 # |0,| = p*.
]

By consider the conjugation G x G — G, one sees that
Corollary 0.8. If G is a finite p-group, then G has non-trivial center.

By using the similar technique, one can also prove the important
Cauchy’s theorem

Theorem 0.9. Let G be a finite group such that p | |G|. Then there is
an element in G of order p.

Proof. Let
S ={(a1,...,ap)|a; € G,Hai =e}.
And consider a group action C, xS — S by (1, (a1, ..,ap,)) — (ap, a1, ..., ap_1).
One claims that Sy = {(a,a, ...,a)|a € G}.
By the Lemma, one has |S| = |Sy| (mod . It follows that p | |Sol.
In particular, |Sp| > 1, hence there is (a, ...,a) € Sy with a # e. One
sees that o(a) = p. d



