
Advanced Algebra I

Group Action

We will define the group action and illustrate some previous known
theorem from group action point of view.

Definition 0.1. We say a group G acts on a set S, or S is a G-set,
if there is function α : G × S → S, usually denoted α(g, x) = gx,
compatible with group structure, i.e. satisfying:

(1) let e ∈ G be the idetity, then ex = x for all x ∈ S.
(2) g(hx) = (gh)x for all g, h ∈ G, x ∈ S.

By the definition, it’s clear to see that if y = gx, then x = g−1y.
Because x = ex = (g−1g)x = g−1(gx) = g−1y.

Moreover, one can see that given a group action α : G × S → S is
equivalent to have a group homomorphism α̃ : G → A(S), where A(S)
denote the group of bijections on S.

Exercise 0.2. Check the equivalence of α and α̃.

An application is to take a finite group G of order n, and take S = G.
Then the group multiplication gives a group action. Thus we have a
group homomorphism

α̃ : G → A(G) ∼= Sn.

One can check that in this case α̃ is an injection. Thus we have the
Cayley’s theorem.

We now introduce two important notions:

Definition 0.3. Suppose G acts on S. For x ∈ S, the orbit of x is
defined as

Ox := {gx|g ∈ G}.
And the stabilizer of x is defined as

Gx := {g ∈ G|gx = x}.
Then one has the following

Proposition 0.4.

|G| = |Ox| · |Gx|.
Sketch. Consider Sy := {g ∈ G|gx = y}. Then G is a disjoint union of
Sy for all y ∈ Ox. Furthermore, fix a g such that y = gx, then one has
Sy = gGx. Thus

|G| = | ∪y∈Ox Sy| =
∑
y∈Ox

|Gx| = |Ox| · |Gx|.
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By applying this to the situation that H < G is a subgroup and take
S = G/H with the action G×G/H → G/H via α(g, xH) = gxH. For
H ∈ S, the stabilizer is H, and the orbit is G/H. Thus we have

|G| = |G/H| · |H|,
which is the Lagrange’s theorem.

Another way of counting is to consider the decomposition of S into
disjoint union of orbits. Note that if Ox = Oy if and only if y ∈ Ox.
Thus for convenience, we pick a representative in each orbit and let I
be a set of representatives of orbits. We have:

S = ∪x∈IOx.

In particular,

|S| =
∑
x∈I

|Ox|.

This simple minded equation actually give various nice application.
We have the following natural applications.

Example 0.5 (translation). Let G be a group. One can consider the
action G × G → G by α(g, x) = gx. Such action is called translation.
More generally, let H < G be a subgroup. Then one has translation
H × G → G by (h, x) 7→ hx. Then |S| =

∑
x∈I |Ox| gives Lagrange

theorem again.

Example 0.6 (conjugation). Let G be a group. One can consider
the action G × G → G by α(g, x) = gxg−1. Such action is called
conjugation. For a x ∈ G, Gx = C(x), the centralizer. And Ox = {x}
if and only if x ∈ Z(G), the center of G. So, for G finite, the equation
|S| = ∑

x∈I |Ox| now gives

|G| =
∑
x∈I

|G|/|C(x)|.

Which is the class equation.

The class equation (we mean the general form |S| =
∑

x∈I |Ox|) is
very useful if the group is a finite p-group. By a finite p-group, we
mean a group G with |G| = pn for some n > 0. Consider now G is a
finite p group acting on S. Let

S0 := {x ∈ S|gx = x,∀g ∈ G}.
Then the class equation can be written as

|S| = |S0|+
∑

x∈I,x6∈S0

|Ox|.

One has the following

Lemma 0.7. Let G be a finite p-group. Keep the notation as above,
then

|S| ≡ |S0| (mod p).
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Proof. If x 6∈ S0, then 1 6= |Ox| = pk.
¤

By consider the conjugation G×G → G, one sees that

Corollary 0.8. If G is a finite p-group, then G has non-trivial center.

By using the similar technique, one can also prove the important
Cauchy’s theorem

Theorem 0.9. Let G be a finite group such that p | |G|. Then there is
an element in G of order p.

Proof. Let

S := {(a1, ..., ap)|ai ∈ G,
∏

ai = e}.
And consider a group action Cp×S → S by (1, (a1, .., ap)) 7→ (ap, a1, ..., ap−1).
One claims that S0 = {(a, a, ..., a)|a ∈ G}.

By the Lemma, one has |S| ≡ |S0| (mod . It follows that p | |S0|.
In particular, |S0| > 1, hence there is (a, ..., a) ∈ S0 with a 6= e. One
sees that o(a) = p. ¤


