Advanced Algebra I

More examples

Let $\rho: G \to GL(V)$ be a representation. It's clear that ker (ρ) is a normal subgroup of G. One has

$$ker(\rho) = ker(\chi),$$

where $ker(\chi) := \{s \in G | \chi(s) = \chi(1)\}$. Therefore, by looking at the character table, it's possible to obtain some information on normal subgroups and hence on the structure of the group. We illustrate the following example.

Example 0.1. Let G be a finite group with the following character table. We would like to determine the structure of the group G. Where $\omega = \frac{-1+\sqrt{3}i}{2}$ is the third root of unity.

	(1)	(6)	(7)	(7)	(7)	(7)	(7)
	1	a	b	c	d	e	f
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	ω	$\bar{\omega}$	ω	$\bar{\omega}$
χ_3	1	1	1	$\bar{\omega}$	ω	$\bar{\omega}$	ω
χ_4	1	1	-1	$-\omega$	$-\bar{\omega}$	ω	$\bar{\omega}$
χ_5	1	1	-1	$-\bar{\omega}$	$-\omega$	$\bar{\omega}$	ω
χ_6	1	1	-1	-1	-1	1	1
χ_7	6	-1	0	0	0	0	0

(1) The group G has order 42.

(2) We have normal subgroups $N_i := ker(\chi_i)$ for i = 2, 4, 6. Note that $|N_2| = 14, |N_4| = 7, |N_6| = 21$.

Moreover, If N_2 is abelian, then irreducible representation of G has degree $\leq \frac{|G|}{|N_2|} = 3$ which is impossible. Hence N_2 is nonabelian. So is N_3 .

(3) o(a) = 7, o(c) = 6. To see these, note that

$$6 = |c_a| = \frac{|G|}{|C_G(a)|},$$

where c_a denotes the conjugacy class of a and $C_G(a)$ denotes the centralizer of a in G. It follows that $\langle a \rangle \subset C_G(a)$ has order 7.

Similarly, one has $\langle c \rangle \subset C_G(c)$ hence o(c)|6. On the other hand, $6 = o(\rho_4(c))|o(c)$. It's clear that o(c) = 6.

- (4) $\langle a \rangle = N_4 \triangleleft G$. Thus $G = \langle a, c | a^7 = c^6 = e, cac^{-1} = a^k \rangle$. One must have $k^6 \equiv 1 \pmod{7}$. That is, $k \equiv 1, ..., 6 \pmod{7}$. mod 7).
- (5) we finally claim that $k \equiv 3, 5$. If $k \equiv 1$, then G is abelian hence $\cong \mathbb{Z}_{42}$ which is impossible. If $k \equiv 2$, then $c^3 a c^{-3} = a$. Thus

 $C_G(c^3) \supseteq < c^3, a >$. It follows that $|c_{c^3}| < 6$ which is impossible. The argument is similar for $k \equiv 4, 6$.

(6) We remark that the groups $G_3 := \langle a, c | a^7 = c^6 = e, cac^{-1} = a^3 \rangle$ and $G_5 := \langle a, c | a^7 = c^6 = e, cac^{-1} = a^5 \rangle$ are isomorphic by $G_5 \to G_3$ which sends $a \mapsto a, c \mapsto c^5$.

Another important example of constructing representation is the *per*mutation representation. Let G be a group acting on a set S. We consider a vector space $\mathbb{C}[S]$ with basis $\{e_x\}_{x\in S}$. Via the group action $\rho: G \times S \to S$, one can produce an action $\tilde{\rho}: G \times \mathbb{C}[S] \to \mathbb{C}[S]$ by $\tilde{\rho}_s(e_x) = e_{sx}$. This clearly gives a representation of G on $\mathbb{C}[S]$. one notice that the matrix for such permutation representation is a permutation matrix. The diagonal entries is 1 if and only if $e_x = e_{sx}$. Therefore, one has

$$\chi_{\widetilde{\rho}}(s) = |\{x \in S | sx = x\}|.$$

Moreover, let $e = \sum_{x \text{ ins}} e_x$. It's clear that $\tilde{\rho}_s(e) = e$. Hence $V = \mathbb{C}e \subset \mathbb{C}[G]$ is an invariant subspace such that $\tilde{\rho}|_V = 1$. Thus one has a decomposition

$$\widetilde{\rho} = 1 \oplus \rho'.$$

Example 0.2. Let $G = S_3$. Then G acts on $S = \{1, 2, 3\}$ naturally. We have two representation of degree 1. Together with $\tilde{\rho} = 1 \oplus \rho'$, one has the following table:

	(1)	(3)	(2)
	1	(12)	(123)
χ_1	1	1	1
χ_2	1	-1	1
$\chi_{\widetilde{ ho}}$	3	1	0
$\chi_{ ho'}$	2	0	-1

It's easy (by orthogonality) to see that $\chi_{\rho'}$ is irreducible. And hence we have completes the table of irreducible characters.

Example 0.3. Let G be a non-abelian group of order 21. Then it's clear that $G = \langle a, b | a^7 = b^3 = e, bab^{-1} = a^2 \rangle$.

- (1) By direct computations, one finds that there are conjugacy classes $c_1 = \{e\}, c_2 = \{a, a^2, a^4\}, c_3 = \{a^3, a^5, a^6\}, c_4 = \{b, ab, ..., a^6b\}, c_5 = \{b^2, ab^2, ..., a^6b^2\}.$
- (2) $N = \langle a \rangle$ is clearly a normal subgroup. The irreducible representations of $G/N \cong \mathbb{Z}_3$ gives 3 irreducible representation of degree 1. Where ρ_1 is the trivial one, $\rho_2(a^i b^j) = \omega^j$, $\rho_3(a^i b^j) = \omega^{2j}$.
- (3) Let ρ_4 , ρ_5 be the remaining irreducible representations (of degree d_4 , d_5 respectively). By $21 = 3 + d_4^2 + d_5^2$, one has $d_4 = d_5 = 3$.

We have now

	(1)	(3)	(3)	(7)	(7)
	e	a	a^3	b	b^2
χ_1	1	1	1	1	1
χ_2	1	1	1	ω	ω^2
χ_3	1	1	1	ω^2	ω
χ_4	3				
χ_5	3				

- (4) Let S be the set of Sylow 3-subgroups. |S| = 1 or 7. One sees that |S| = 7 otherwise let P be the only Sylow 3-subgroup which is normal, it follows that G = NP and hence $G = N \oplus P \cong \mathbb{Z}_{21}$.
- (5) G acting on S gives a permutation representation $\tilde{\rho}$ of degree 7. By computation, $\chi_{\rho'} = 6, -1, -1, 0, 0$ on e, a, a^3, b, b^2 respectively. One can checks that $\langle \chi_{\rho'}, \chi_i \rangle = 0$ for i = 1, 2, 3. Thus

 $\chi_{\rho'} = n_4 \chi_4 + n_5 \chi_5,$

with $n_4, n_5 \geq 0$, $n_4 + n_5 = 2$. However, (n_4, n_5) can't be (2, 0) or (0, 2) cause otherwise $\chi_4(a) = \frac{-1}{2} \notin \mathcal{A}$ (or $\chi_5(a)$). Hence one has

$$\chi_{\rho'} = \chi_4 + \chi_5$$

(6) By using the orthogonal properties, one can solve for χ_4, χ_5 and we obtain the following complete table:

	(1)	(3)	(3)	(7)	(7)
	e	a	a^3	b	b^2
χ_1	1	1	1	1	1
χ_2	1	1	1	ω	ω^2
χ_3	1	1	1	ω^2	ω
χ_4	3	ζ	$\bar{\zeta}$	0	0
χ_5	3	$ar{\zeta}$	ζ	0	0
$1 \perp \sqrt{7}i$					

where $\zeta = \frac{-1+\sqrt{7}i}{2}$.