Advanced Algebra I

More examples

Let $\rho: G \rightarrow G L(V)$ be a representation. It's clear that $\operatorname{ker}(\rho)$ is a normal subgroup of G. One has

$$
\operatorname{ker}(\rho)=\operatorname{ker}(\chi)
$$

where $\operatorname{ker}(\chi):=\{s \in G \mid \chi(s)=\chi(1)\}$. Therefore, by looking at the character table, it's possible to obtain some information on normal subgroups and hence on the structure of the group. We illustrate the following example.

Example 0.1. Let G be a finite group with the following character table. We would like to determine the structure of the group G. Where $\omega=\frac{-1+\sqrt{3} i}{2}$ is the third root of unity.

	(1)	(6)	(7)	(7)	(7)	(7)	(7)
	1	a	b	c	d	e	f
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	1	1	ω	$\bar{\omega}$	ω	$\bar{\omega}$
χ_{3}	1	1	1	$\bar{\omega}$	ω	$\bar{\omega}$	ω
χ_{4}	1	1	-1	$-\omega$	$-\bar{\omega}$	ω	$\bar{\omega}$
χ_{5}	1	1	-1	$-\bar{\omega}$	$-\omega$	$\bar{\omega}$	ω
χ_{6}	1	1	-1	-1	-1	1	1
χ_{7}	6	-1	0	0	0	0	0

(1) The group G has order 42 .
(2) We have normal subgroups $N_{i}:=\operatorname{ker}\left(\chi_{i}\right)$ for $i=2,4,6$. Note that $\left|N_{2}\right|=14,\left|N_{4}\right|=7,\left|N_{6}\right|=21$.

Moreover, If N_{2} is abelian, then irreducible representation of G has degree $\leq \frac{|G|}{\left|N_{2}\right|}=3$ which is impossible. Hence N_{2} is nonabelian. So is N_{3}.
(3) $o(a)=7, o(c)=6$. To see these, note that

$$
6=\left|c_{a}\right|=\frac{|G|}{\left|C_{G}(a)\right|},
$$

where c_{a} denotes the conjugacy class of a and $C_{G}(a)$ denotes the centralizer of a in G. It follows that $<a>\subset C_{G}(a)$ has order 7.

Similarly, one has $<c>\subset C_{G}(c)$ hence $o(c) \mid 6$. On the other hand, $6=o\left(\rho_{4}(c)\right) \mid o(c)$. It's clear that $o(c)=6$.
(4) $\langle a\rangle=N_{4} \triangleleft G$. Thus $G=<a, c \mid a^{7}=c^{6}=e, c a c^{-1}=a^{k}>$. One must have $k^{6} \equiv 1(\bmod 7)$. That is, $k \equiv 1, . ., 6$ ($\bmod 7)$.
(5) we finally claim that $k \equiv 3,5$. If $k \equiv 1$, then G is abelian hence $\cong \mathbb{Z}_{42}$ which is impossible. If $k \equiv 2$, then $c^{3} a c^{-3}=a$. Thus
$C_{G}\left(c^{3}\right) \supseteq<c^{3}, a>$. It follows that $\left|c_{c^{3}}\right|<6$ which is impossible. The argument is similar for $k \equiv 4,6$.
(6) We remark that the groups $G_{3}:=<a, c \mid a^{7}=c^{6}=e, c a c^{-1}=$ $a^{3}>$ and $G_{5}:=<a, c \mid a^{7}=c^{6}=e, c a c^{-1}=a^{5}>$ are isomorphic by $G_{5} \rightarrow G_{3}$ which sends $a \mapsto a, c \mapsto c^{5}$.

Another important example of constructing representation is the permutation representation. Let G be a group acting on a set S. We consider a vector space $\mathbb{C}[S]$ with basis $\left\{e_{x}\right\}_{x \in S}$. Via the group action $\rho: G \times S \rightarrow S$, one can produce an action $\widetilde{\rho}: G \times \mathbb{C}[S] \rightarrow \mathbb{C}[S]$ by $\widetilde{\rho}_{s}\left(e_{x}\right)=e_{s x}$. This clearly gives a representation of G on $\mathbb{C}[S]$. one notice that the matrix for such permutation representation is a permutation matrix. The diagonal entries is 1 if and only if $e_{x}=e_{s x}$. Therefore, one has

$$
\chi_{\tilde{\rho}}(s)=|\{x \in S \mid s x=x\}| .
$$

Moreover, let $e=\sum_{x \text { inS }} e_{x}$. It's clear that $\widetilde{\rho}_{s}(e)=e$. Hence $V=$ $\mathbb{C} e \subset \mathbb{C}[G]$ is an invariant subspace such that $\left.\widetilde{\rho}\right|_{V}=1$. Thus one has a decomposition

$$
\widetilde{\rho}=1 \oplus \rho^{\prime}
$$

Example 0.2. Let $G=S_{3}$. Then G acts on $S=\{1,2,3\}$ naturally. We have two representation of degree 1. Together with $\widetilde{\rho}=1 \oplus \rho^{\prime}$, one has the following table:

	(1)	(3)	(2)
	1	(12)	(123)
χ_{1}	1	1	1
χ_{2}	1	-1	1
$\chi_{\widetilde{\rho}}$	3	1	0
$\chi_{\rho^{\prime}}$	2	0	-1

It's easy (by orthogonality) to see that $\chi_{\rho^{\prime}}$ is irreducible. And hence we have completes the table of irreducible characters.

Example 0.3. Let G be a non-abelian group of order 21. Then it's clear that $G=<a, b \mid a^{7}=b^{3}=e, b a b^{-1}=a^{2}>$.
(1) By direct computations, one finds that there are conjugacy classes $c_{1}=\{e\}, c_{2}=\left\{a, a^{2}, a^{4}\right\}, c_{3}=\left\{a^{3}, a^{5}, a^{6}\right\}, c_{4}=\left\{b, a b, \ldots, a^{6} b\right\}, c_{5}$ $=\left\{b^{2}, a b^{2}, \ldots, a^{6} b^{2}\right\}$.
(2) $N=<a>$ is clearly a normal subgroup. The irreducible representations of $G / N \cong \mathbb{Z}_{3}$ gives 3 irreducible representation of degree 1. Where ρ_{1} is the trivial one, $\rho_{2}\left(a^{i} b^{j}\right)=\omega^{j}, \rho_{3}\left(a^{i} b^{j}\right)=$ $\omega^{2 j}$.
(3) Let ρ_{4}, ρ_{5} be the remaining irreducible representations (of degree d_{4}, d_{5} respectively). By $21=3+d_{4}^{2}+d_{5}^{2}$, one has $d_{4}=d_{5}=3$.

We have now

	(1)	(3)	(3)	(7)	(7)
	e	a	a^{3}	b	b^{2}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	ω	ω^{2}
χ_{3}	1	1	1	ω^{2}	ω
χ_{4}	3				
χ_{5}	3				

(4) Let S be the set of Sylow 3-subgroups. $|S|=1$ or 7 . One sees that $|S|=7$ otherwise let P be the only Sylow 3-subgroup which is normal, it follows that $G=N P$ and hence $G=N \oplus P \cong \mathbb{Z}_{21}$.
(5) G acting on S gives a permutation representation $\widetilde{\rho}$ of degree 7. By computation, $\chi_{\rho^{\prime}}=6,-1,-1,0,0$ on e, a, a^{3}, b, b^{2} respectively. One can checks that $\left\langle\chi_{\rho^{\prime}}, \chi_{i}\right\rangle=0$ for $i=1,2,3$. Thus

$$
\chi_{\rho^{\prime}}=n_{4} \chi_{4}+n_{5} \chi_{5},
$$

with $n_{4}, n_{5} \geq 0, n_{4}+n_{5}=2$. However, $\left(n_{4}, n_{5}\right)$ can't be $(2,0)$ or $(0,2)$ cause otherwise $\chi_{4}(a)=\frac{-1}{2} \notin \mathcal{A}\left(\right.$ or $\chi_{5}(a)$). Hence one has

$$
\chi_{\rho^{\prime}}=\chi_{4}+\chi_{5} .
$$

(6) By using the orthogonal properties, one can solve for χ_{4}, χ_{5} and we obtain the following complete table:

	(1)	(3)	(3)	(7)	(7)
	e	a	a^{3}	b	b^{2}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	ω	ω^{2}
χ_{3}	1	1	1	ω^{2}	ω
χ_{4}	3	ζ	$\bar{\zeta}$	0	0
χ_{5}	3	$\bar{\zeta}$	ζ	0	0

where $\zeta=\frac{-1+\sqrt{7} i}{2}$.

