
Advanced Algebra I

More examples

Let ρ : G → GL(V ) be a representation. It’s clear that ker(ρ) is a
normal subgroup of G. One has

ker(ρ) = ker(χ),

where ker(χ) := {s ∈ G|χ(s) = χ(1)}. Therefore, by looking at the
character table, it’s possible to obtain some information on normal
subgroups and hence on the structure of the group. We illustrate the
following example.

Example 0.1. Let G be a finite group with the following character
table. We would like to determine the structure of the group G. Where

ω = −1+
√

3i
2

is the third root of unity.

(1) (6) (7) (7) (7) (7) (7)
1 a b c d e f

χ1 1 1 1 1 1 1 1
χ2 1 1 1 ω ω̄ ω ω̄
χ3 1 1 1 ω̄ ω ω̄ ω
χ4 1 1 −1 −ω −ω̄ ω ω̄
χ5 1 1 −1 −ω̄ −ω ω̄ ω
χ6 1 1 −1 −1 −1 1 1
χ7 6 −1 0 0 0 0 0

(1) The group G has order 42.
(2) We have normal subgroups Ni := ker(χi) for i = 2, 4, 6. Note

that |N2| = 14, |N4| = 7, |N6| = 21.
Moreover, If N2 is abelian, then irreducible representation of

G has degree ≤ |G|
|N2| = 3 which is impossible. Hence N2 is non-

abelian. So is N3.
(3) o(a) = 7, o(c) = 6. To see these, note that

6 = |ca| = |G|
|CG(a)| ,

where ca denotes the conjugacy class of a and CG(a) denotes
the centralizer of a in G. It follows that < a >⊂ CG(a) has
order 7.

Similarly, one has < c >⊂ CG(c) hence o(c)|6. On the other
hand, 6 = o(ρ4(c))|o(c). It’s clear that o(c) = 6.

(4) < a >= N4 C G. Thus G =< a, c|a7 = c6 = e, cac−1 = ak >.
One must have k6 ≡ 1 ( mod 7). That is, k ≡ 1, .., 6 (
mod 7).

(5) we finally claim that k ≡ 3, 5. If k ≡ 1, then G is abelian hence
∼= Z42 which is impossible. If k ≡ 2, then c3ac−3 = a. Thus
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CG(c3) ⊇< c3, a >. It follows that |cc3| < 6 which is impossible.
The argument is similar for k ≡ 4, 6.

(6) We remark that the groups G3 :=< a, c|a7 = c6 = e, cac−1 =
a3 > and G5 :=< a, c|a7 = c6 = e, cac−1 = a5 > are isomorphic
by G5 → G3 which sends a 7→ a, c 7→ c5.

Another important example of constructing representation is the per-
mutation representation. Let G be a group acting on a set S. We
consider a vector space C[S] with basis {ex}x∈S. Via the group action
ρ : G × S → S, one can produce an action ρ̃ : G × C[S] → C[S] by
ρ̃s(ex) = esx. This clearly gives a representation of G on C[S]. one
notice that the matrix for such permutation representation is a per-
mutation matrix. The diagonal entries is 1 if and only if ex = esx.
Therefore, one has

χρ̃(s) = |{x ∈ S|sx = x}|.
Moreover, let e =

∑
x inS ex. It’s clear that ρ̃s(e) = e. Hence V =

Ce ⊂ C[G] is an invariant subspace such that ρ̃|V = 1. Thus one has a
decomposition

ρ̃ = 1⊕ ρ′.

Example 0.2. Let G = S3. Then G acts on S = {1, 2, 3} naturally.
We have two representation of degree 1. Together with ρ̃ = 1⊕ ρ′, one
has the following table:

(1) (3) (2)
1 (12) (123)

χ1 1 1 1
χ2 1 −1 1
χρ̃ 3 1 0
χρ′ 2 0 −1

It’s easy (by orthogonality) to see that χρ′ is irreducible. And hence we
have completes the table of irreducible characters.

Example 0.3. Let G be a non-abelian group of order 21. Then it’s
clear that G =< a, b|a7 = b3 = e, bab−1 = a2 >.

(1) By direct computations, one finds that there are conjugacy classes
c1 = {e}, c2 = {a, a2, a4}, c3 = {a3, a5, a6}, c4 = {b, ab, ..., a6b},c5

= {b2, ab2, ..., a6b2}.
(2) N =< a > is clearly a normal subgroup. The irreducible rep-

resentations of G/N ∼= Z3 gives 3 irreducible representation of
degree 1. Where ρ1 is the trivial one, ρ2(a

ibj) = ωj, ρ3(a
ibj) =

ω2j.
(3) Let ρ4, ρ5 be the remaining irreducible representations (of degree

d4, d5 respectively). By 21 = 3 + d2
4 + d2

5, one has d4 = d5 = 3.
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We have now

(1) (3) (3) (7) (7)
e a a3 b b2

χ1 1 1 1 1 1
χ2 1 1 1 ω ω2

χ3 1 1 1 ω2 ω
χ4 3
χ5 3

(4) Let S be the set of Sylow 3-subgroups. |S| = 1 or 7. One sees
that |S| = 7 otherwise let P be the only Sylow 3-subgroup which
is normal, it follows that G = NP and hence G = N⊕P ∼= Z21.

(5) G acting on S gives a permutation representation ρ̃ of degree
7. By computation, χρ′ = 6,−1,−1, 0, 0 on e, a, a3, b, b2 respec-
tively. One can checks that < χρ′ , χi >= 0 for i = 1, 2, 3. Thus

χρ′ = n4χ4 + n5χ5,

with n4, n5 ≥ 0, n4 + n5 = 2. However, (n4, n5) can’t be (2, 0)
or (0, 2) cause otherwise χ4(a) = −1

2
6∈ A (or χ5(a)). Hence

one has
χρ′ = χ4 + χ5.

(6) By using the orthogonal properties, one can solve for χ4, χ5 and
we obtain the following complete table:

(1) (3) (3) (7) (7)
e a a3 b b2

χ1 1 1 1 1 1
χ2 1 1 1 ω ω2

χ3 1 1 1 ω2 ω
χ4 3 ζ ζ̄ 0 0
χ5 3 ζ̄ ζ 0 0

where ζ = −1+
√

7i
2

.


