Advanced Algebra I Homework 7 due on Nov.7, 2003

Part A.

- (1) Let $\rho: G \to GL(V)$ be a representation on the complex vector space V of dimension d. And χ is the character of ρ .
 - (a) Show that $|\chi(s)| \leq d$ for all $s \in G$. And equality holds if and only if $\rho_s = \lambda I$.
 - (b) We can define $ker(\chi) = \{s \in G | \chi(s) = \chi(1)\}$. Show that $ker(\chi) = ker(\rho)$ and it's a normal subgroup of G.
 - (c) Let $\lambda_1, ..., \lambda_n$ be roots of unity, and let $a = \frac{1}{n} \sum_{i=1}^n \lambda_i$. Prove that if a is an algebraic integer, then either a = 0 or $a = \lambda_1 = ..., = \lambda_n$.
- (2) Let $\rho : G \to GL(V)$ be an irreducible representation of G of degree > 1. Given $v \in V$, we consider $w := \sum_{s \in G} \rho_s(v)$. Prove that w is G-invariant. And prove that w = 0.

Part B.

(1) The following is part of a character table with 2 characters missing:

Where 1, *a*, *b*, *c*, *d* are representatives of conjugacy classes $c_1, ..., c_5$. And the conjugacy classes contains 1, 3, 3, 7, 7 elements respectively. And $\omega = \frac{-1+\sqrt{3}i}{2}$ and $\gamma = \frac{-1+\sqrt{7}i}{2}$.

- (a) Determine the remaining characters.
- (b) Determine the order of a, b, c, d respectively.
- (c) Show that the group has a non-trivial normal subgroup.
- (d) Determine the group by generators and relations.
- (e) What is the commutator of this group? Describe it in terms of union of conjugacy classes.
- (2) Consider the group algebra $\mathbb{C}[S_3]$. Find all elements $u \in \mathbb{C}[S_3]$ such that $u^2 = 1$. (Hint: it might be helpful to consider $\tilde{\rho}$: $\mathbb{C}[S_3] \to \prod M_{d_i}(\mathbb{C})$.)