Elementary Number Theory

Section 3.2 Binary Quadratic Forms

Definition 3.2.1 (a) A monomial $ax_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}, a\neq 0$ is said to have degree $k_1+k_1+\cdots+k_n$.

- (b) The degree of a polynomial is the maximal of the degrees of the monomial terms in the polynomial.
- (c) A polynomial is called a form, or is said to be homogeneous if all its monomial terms have the same degree.
 - (d) A form of degree 2 is called a quadratic form.
 - (e) A form in two variables is called binary.
- (f) The discriminant of a binary quadratic form $f = ax^2 + bxy + cy^2$ is the quantity $d = b^2 4ac$.

Remark 3.2.2 Let $f = ax^2 + bxy + cy^2$. Then $4af(x,y) = (2ax + by)^2 - dy^2$.

Theorem 3.2.3 Let $f(x,y) = ax^2 + bxy + cy^2$ be a binary quadratic form with integral coefficients and discriminant d.

- (a) If d is a square, then the equation f(x,y) = 0 has infinitely many solutions in \mathbb{Z} .
- (b) If $d \neq 0$ and d is not a perfect square, then $a \neq 0, c \neq 0$, and the only solution of the equation f(x, y) = 0 in integers is given by x = y = 0.

Definition 3.2.4 (a) A form f(x, y) is called indefinite if it takes on both positive and negative values.

- (b) The form is called positive (or negative) semidefinite if $f(x, y) \ge 0$ (or $f(x, y) \le 0$) for all integers x, y.
- (c) A semidefinite form is called definite if in addition the only integers x, y for which f(x, y) = 0 are x = 0, y = 0.

Example 3.2.5 (a) $x^2 - 2y^2$ is indefinite. (b) $x^3 - 2xy + y^2$ is positive semidefinite. (c) $x^2 + y^2$ is positive definite.

Theorem 3.2.6 Let $f(x,y) = ax^2 + bxy + cy^2$ be a binary quadratic form with integral coefficients and discriminant d.

- (a) If d > 0 then f(x, y) is indefinite.
- (b) If d = 0 then f(x, y) is semidefinite but not definite.
- (c) If d < 0 then a and c have the same sign and f(x, y) is either positive definite or negative definite according as a > 0 or a < 0.

Theorem 3.2.7 Let $d \in \mathbb{Z}$. There exists at least one binary quadratic form in $\mathbb{Z}[x,y]$ with discriminant d, if and only if $d \equiv 0$ or $1 \pmod{4}$.

Definition 3.2.8 (a) We say that a quadratic form f(x, y) represents an integer n if there exist integers x_0 and y_0 such that $F(x_0, y_0) = n$.

(b) Such a representation is called proper if $(x_0, y_0) = 1$; otherwise it is improper.

Remark 3.2.9 The representations of n by f may be found by determining the proper representations of $\frac{n}{q^2}$ for those g such that $g^2|n$.

Theorem 3.2.10 Let n, d be integers with $n \neq 0$. There exists a binary quadratic form of discriminant d that represents n properly if and only if the congruence $x^2 \equiv d \pmod{4|n|}$, has a solution.

Corollary 3.2.11 Suppose that $d \equiv 0$ or $1 \pmod{4}$. If p is an odd prime, then there is a binary quadratic form of discriminant d that represents p, if and only if p|d or $\left(\frac{d}{p}\right) = 1$.

Theorem 3.2.12 Let $M = \begin{bmatrix} M_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ be a matrix with real entries and put $\begin{bmatrix} u \\ v \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$. The the following are equivalent:

- (i) The linear transformation defines a permutation of lattice points;
- (ii) the matrix M has integral coefficients and $det(M) = \pm 1$.

Definition 3.2.13 (a) The group of 2×2 matrices with integral coefficients and determinants 1 is denoted by Γ , and is called the modular group.

- (b) The quadratic forms $f(x,y) = ax^2 + bxy + cy^2$ and $g(x,y) = Ax^2 + Bxy + Cy^2$ are equivalent, and we write $f \sim g$, if there is an $M = [m_{ij}] \in \Gamma$ such that $g(x,y) = f(m_{11}x + m_{12}y, m_{21}x + m_{22}y)$. In this case we say that M takes f to g.
- (c) Let $f = ax^2 + bxy + cy^2$. Let $F = \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix}$. If $X = \begin{bmatrix} x \\ y \end{bmatrix}$, then $X^t F X = f(x,y)$. F is called the matrix associated with f.

Remark 3.2.14 Let f, g be binary quadratic forms and F, G be the matrices associated with F and G, respectively.

- (a) If M takes f to g, then $M^tFM=G$. Moreover, if $M=\begin{bmatrix}m_{11} & m_{12} \\ m_{21} & m_{22}\end{bmatrix}$, then $A=f(m_{11},m_{12}), C=f(m_{21},m_{22}), B=2am_{11}m_{12}+2cm_{21}m_{22}+b(m_{12}m_{21}+m_{11}m_{22})$.
 - (b) $f \sim g$ if and only if there exists $M \in \Gamma$ such that $M^t F M = G$.
 - (c) The relation \sim is an equivalence relation.

Theorem 3.2.15 Let f and g be equivalent quadratic forms.

(a) For any given integers n, the representation of n by f are in one -to-one correspondence with the representation of n by g.

- (b) Also, the proper representation of n by f are in one-to-one correspondence with the proper representation of n by q.
 - (c) The discriminant of f and g are equal.

Definition 3.2.16 Let f be a binary quadratic form whose discriminant d is not a perfect square.

- (a) If d is not a square, we call f reduced if $-|a| < b \le |a| < |c|$ or if $0 \le b \le |a| = |c|$.
 - (b) If d is a square, we call f reduced if c = 0 and $0 \le a < |b|$.

Theorem 3.2.17 Let d be a given integer which is not a perfect square. Each equivalent class of binary quadratic forms of discriminant d contains at least one reduced form.

Example 3.2.18 Find a reduced form equivalent to the form $133x^2 + 108xy + 22y^2$.

Theorem 3.2.19 Let f be a reduced binary quadratic form whose discriminant d is not a perfect square.

- (a) If f is indefinite, then $0 < |a| \le \frac{1}{2}\sqrt{d}$
- (b) If f is positive definite then $0 < a \le \sqrt{\frac{-d}{3}}$.
- (c) In either case, the number of reduce forms of a given nonsquare discriminant d is finite.

Definition 3.2.20 If d is not a perfect square then the number of equivalence classes of binary quadratic forms of discriminant d is called the class number of d, denoted H(d).

Example 3.2.21 An odd prime p can be written in the form $p = ax^2 - 2y^2$ if and only if $p \equiv \pm 1 \pmod{8}$.

Lemma 3.2.22 Let $f(x,y) = ax^2 + bxy + cy^2$ be a reduced positive definite form. If for some pair of integers x and y we have (x,y) = 1 and $f(x,y) \le c$, then f(x,y) = a or c, and the point (x,y) is one of the six points $\pm (1,0), \pm (0,1), \pm (1,-1)$. Moreover, the number of proper representation of a by f is

$$\begin{cases} 2 & \text{if } a \le c, \\ 4 & \text{if } 0 \le b < a = c, \\ 6 & \text{if } a = b = c. \end{cases}$$

Theorem 3.2.23 Let $f(x,y) = ax^2 + bxy + cy^2$ and $g(x,y) = Ax^2 + Bxy + Cy^2$ be two equivalent reduced positive definite forms. Then f = g.

Definition 3.2.24 Let f(x, y) be a positive definite binary quadratic form. A matrix $M \in \Gamma$ is called an automorph of f if M takes f into itself. The number of automorphs of f is denoted by w(f).

Theorem 3.2.25 (a) Let f and g be equivalent positive definite binary quadratic forms. Then w(f) = w(g), there are exactly w(f) matrices that takes f to g, and there are exactly w(g) matrices that takes g to f.

(b) The only values of w(f) are 2,4,and 6. If f is reduced then

$$\begin{cases} w(f) = 4 & \text{if } a = c \text{ and } b = 0, \\ w(f) = 6 & \text{if } a = b = c, \\ w(f) = 2 & \text{otherwise.} \end{cases}$$