Elementary Number Theory

Section 3.2 Binary Quadratic Forms

Definition 3.2.1 (a) A monomial \(ax_1^{k_1}x_2^{k_2} \cdots x_n^{k_n}, a \neq 0 \) is said to have degree
\(k_1 + k_2 + \cdots + k_n. \)

(b) The degree of a polynomial is the maximal of the degrees of the monomial terms in the polynomial.

(c) A polynomial is called a form, or is said to be homogeneous if all its monomial terms have the same degree.

(d) A form of degree 2 is called a quadratic form.

(e) A form in two variables is called binary.

(f) The discriminant of a binary quadratic form \(f = ax^2 + bxy + cy^2 \) is the quantity \(d = b^2 - 4ac. \)

Remark 3.2.2 Let \(f = ax^2 + bxy + cy^2. \) Then \(4af(x, y) = (2ax + by)^2 - dy^2. \)

Theorem 3.2.3 Let \(f(x, y) = ax^2 + bxy + cy^2 \) be a binary quadratic form with integral coefficients and discriminant \(d. \)

(a) If \(d > 0 \) then \(f(x, y) \) is indefinite.

(b) If \(d = 0 \) then \(f(x, y) \) is semidefinite but not definite.

(c) If \(d < 0 \) then \(a \) and \(c \) have the same sign and \(f(x, y) \) is either positive definite or negative definite according as \(a > 0 \) or \(a < 0. \)

Definition 3.2.4 (a) A form \(f(x, y) \) is called indefinite if it takes on both positive and negative values.

(b) The form is called positive (or negative) semidefinite if \(f(x, y) \geq 0 \) (or \(f(x, y) \leq 0 \)) for all integers \(x, y. \)

(c) A semidefinite form is called definite if in addition the only integers \(x, y \) for which \(f(x, y) = 0 \) are \(x = 0, y = 0. \)

Example 3.2.5 (a) \(x^2 - 2y^2 \) is indefinite. (b) \(x^3 - 2xy + y^2 \) is positive semidefinite. (c) \(x^2 + y^2 \) is positive definite.

Theorem 3.2.6 Let \(f(x, y) = ax^2 + bxy + cy^2 \) be a binary quadratic form with integral coefficients and discriminant \(d. \)

(a) If \(d > 0 \) then \(f(x, y) \) is indefinite.

(b) If \(d = 0 \) then \(f(x, y) \) is semidefinite but not definite.

(c) If \(d < 0 \) then \(a \) and \(c \) have the same sign and \(f(x, y) \) is either positive definite or negative definite according as \(a > 0 \) or \(a < 0. \)

Theorem 3.2.7 Let \(d \in \mathbb{Z}. \) There exists at least one binary quadratic form in \(\mathbb{Z}[x, y] \) with discriminant \(d, \) if and only if \(d \equiv 0 \) or 1(mod 4).
Definition 3.2.8 (a) We say that a quadratic form \(f(x, y) \) represents an integer \(n \) if there exist integers \(x_0 \) and \(y_0 \) such that \(F(x_0, y_0) = n \).

(b) Such a representation is called proper if \((x_0, y_0) = 1\); otherwise it is improper.

Remark 3.2.9 The representations of \(n \) by \(f \) may be found by determining the proper representations of \(\frac{n}{g^2} \) for those \(g \) such that \(g^2|n \).

Theorem 3.2.10 Let \(n, d \) be integers with \(n \neq 0 \). There exists a binary quadratic form of discriminant \(d \) that represents \(n \) properly if and only if the congruence \(x^2 \equiv d \pmod{4|n|} \), has a solution.

Corollary 3.2.11 Suppose that \(d \equiv 0 \text{ or } 1 \pmod{4} \). If \(p \) is an odd prime, then there is a binary quadratic form of discriminant \(d \) that represents \(p \), if and only if \(p|d \) or \((\frac{d}{p}) = 1 \).

Theorem 3.2.12 Let \(M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \) be a matrix with real entries and put \([u \ v]^T = M \begin{bmatrix} x \\ y \end{bmatrix} \). The following are equivalent:

(i) The linear transformation defines a permutation of lattice points;
(ii) the matrix \(M \) has integral coefficients and \(\det(M) = \pm 1 \).

Definition 3.2.13 (a) The group of \(2 \times 2 \) matrices with integral coefficients and determinants \(1 \) is denoted by \(\Gamma \), and is called the modular group.

(b) The quadratic forms \(f(x, y) = ax^2 + bxy + cy^2 \) and \(g(x, y) = Ax^2 + Bxy + Cy^2 \) are equivalent, and we write \(f \sim g \), if there is an \(M = [m_{ij}] \in \Gamma \) such that \(g(x, y) = f(m_{11}x + m_{12}y, m_{21}x + m_{22}y) \). In this case we say that \(M \) takes \(f \) to \(g \).

(c) Let \(f = ax^2 + bxy + cy^2 \). Let \(F = \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix} \). If \(X = \begin{bmatrix} x \\ y \end{bmatrix} \), then \(X^tFX = f(x, y) \). \(F \) is called the matrix associated with \(f \).

Remark 3.2.14 Let \(f, g \) be binary quadratic forms and \(F, G \) be the matrices associated with \(F \) and \(G \), respectively.

(a) If \(M \) takes \(f \) to \(g \), then \(M^tFM = G \). Moreover, if \(M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \), then \(A = f(m_{11}, m_{12}), C = f(m_{21}, m_{22}), B = 2am_{11}m_{12} + 2cm_{21}m_{22} + b(m_{12}m_{21} + m_{11}m_{22}) \).

(b) \(f \sim g \) if and only if there exists \(M \in \Gamma \) such that \(M^tFM = G \).

(c) The relation \(\sim \) is an equivalence relation.

Theorem 3.2.15 Let \(f \) and \(g \) be equivalent quadratic forms.

(a) For any given integers \(n \), the representation of \(n \) by \(f \) are in one-to-one correspondence with the representation of \(n \) by \(g \).
(b) Also, the proper representation of n by f are in one-to-one correspondence with the proper representation of n by g.
(c) The discriminant of f and g are equal.

Definition 3.2.16 Let f be a binary quadratic form whose discriminant d is not a perfect square.
(a) If d is not a square, we call f reduced if $-|a| < b \leq |a| < |c|$ or if $0 \leq b \leq |a| = |c|$.
(b) If d is a square, we call f reduced if $c = 0$ and $0 \leq a < |b|$.

Theorem 3.2.17 Let d be a given integer which is not a perfect square. Each equivalent class of binary quadratic forms of discriminant d contains at least one reduced form.

Example 3.2.18 Find a reduced form equivalent to the form $133x^2 + 108xy + 22y^2$.

Theorem 3.2.19 Let f be a reduced binary quadratic form whose discriminant d is not a perfect square.
(a) If f is indefinite, then $0 < |a| \leq \frac{1}{2}\sqrt{d}$
(b) If f is positive definite then $0 < a \leq \sqrt{-\frac{d}{3}}$.
(c) In either case, the number of reduce forms of a given nonsquare discriminant d is finite.

Definition 3.2.20 If d is not a perfect square then the number of equivalence classes of binary quadratic forms of discriminant d is called the class number of d, denoted $H(d)$.

Example 3.2.21 An odd prime p can be written in the form $p = ax^2 - 2y^2$ if and only if $p \equiv \pm 1(\text{mod } 8)$.

Lemma 3.2.22 Let $f(x, y) = ax^2 + bxy + cy^2$ be a reduced positive definite form. If for some pair of integers x and y we have $(x, y) = 1$ and $f(x, y) \leq c$, then $f(x, y) = a$ or c, and the point (x, y) is one of the six points $\pm (1, 0), \pm (0, 1), \pm (1, -1)$. Moreover, the number of proper representation of a by f is

$$
\begin{cases}
2 & \text{if } a \leq c, \\
4 & \text{if } 0 \leq b < a = c, \\
6 & \text{if } a = b = c.
\end{cases}
$$

Theorem 3.2.23 Let $f(x, y) = ax^2 + bxy + cy^2$ and $g(x, y) = Ax^2 + Bxy + Cy^2$ be two equivalent reduced positive definite forms. Then $f = g$.

Definition 3.2.24 Let \(f(x, y) \) be a positive definite binary quadratic form. A matrix \(M \in \Gamma \) is called an automorph of \(f \) if \(M \) takes \(f \) into itself. The number of automorphs of \(f \) is denoted by \(w(f) \).

Theorem 3.2.25 (a) Let \(f \) and \(g \) be equivalent positive definite binary quadratic forms. Then \(w(f) = w(g) \), there are exactly \(w(f) \) matrices that takes \(f \) to \(g \), and there are exactly \(w(g) \) matrices that takes \(g \) to \(f \).

(b) The only values of \(w(f) \) are 2,4, and 6. If \(f \) is reduced then

\[
\begin{cases}
 w(f) = 4 & \text{if } a = c \text{ and } b = 0, \\
 w(f) = 6 & \text{if } a = b = c, \\
 w(f) = 2 & \text{otherwise}.
\end{cases}
\]