第 15 章

重積分 (Multiple Integrals)

E	=	귨	Ŕ

— жл		
	15.1	矩形上的雙重積分
	15.2	累次積分
	15.3	有界非矩形區域上的雙重積分
	15.4	在極座標下的重積分
	15.5	雙重積分的應用
	15.6	曲面之表面積
	15.7	直角座標系下的三重積分
	15.8	三重積分之應用
	15.9	柱面座標與球面座標上的三重積分
	15.10	D 重積分的變數變換 190

矩形上的雙重積分 (Double Integrals over Rectangles) 15.1

定義

15.1.1. 目標. 令 $R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\}, \ z = f(x, y)$ 為 定義在 R 上的連續函數, 且在 R 上 $f(x,y) \ge 0$ 。令 S 爲在 R 之上, 且在 f 之圖形下的立體區 域, 即 $S = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le f(x, y), (x, y) \in R\}$ 。欲求 S 的體積。

- 定義 15.1.2. (1) (a) 將 [a,b] 等分為 m 個子區間, 分點為 $a=x_0,\,x_1,\cdots,\,x_{m-1},\,x_m=b,$ 將 [c,d] 等分爲 n 個子區間,分點爲 $c=y_0,\,y_1,\,\cdots,\,y_{n-1},\,y_n=d$ 。如此得到 mn 個子矩 形 $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$,子矩形面積爲 $\triangle A = \triangle x \triangle y = \frac{b-a}{m} \frac{d-c}{n}$ 。
 - (b) 在 R_{ij} 中選一個樣本點 (sample point) $\left(x_{ij}^*,y_{ij}^*\right)$, 得一以 $f\left(x_{ij}^*,y_{ij}^*\right)$ 爲高的立方體, 其 體積爲 $f\left(x_{ij}^{*},y_{ij}^{*}\right)\triangle A$ 。
 - (c) 如此得 S 之體積的估計値 $V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{ij}^{*}, y_{ij}^{*}\right) \triangle A$ 。
 - (d) 定義 $V = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \triangle A$ 爲 S 的體積。

(2) 令 f 爲定義在 R 上的函數,如同 (1)(a),(b) 之符號。考慮極限 $\lim_{m,n\to\infty}\sum_{i=1}^m\sum_{j=1}^nf\left(x_{ij}^*,y_{ij}^*\right)\triangle A$ 。 若此極限存在,則稱 f(x,y) 在 R 上可積分 (integrable)。此極限稱爲 f 在 R 上的雙重積分 (double integral),記爲 $\iint_R f(x,y)dA$, $\iint_R f(x,y)dxdy$ 或 $\iint_R f(x,y)dydx$ 。

[註]

- (1) $\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{ij}^{*}, y_{ij}^{*}\right) \triangle A$ 稱爲一個 Riemann 和。
- (2) 若 $f(x,y) \ge 0$ 且爲連續, 則在 R 上, 且在 z = f(x,y) 之下的體積爲 $V = \iint_R f(x,y) dA$ 。
- (3) 重積分的嚴謹定義爲: $\forall \epsilon > 0$, $\exists N$ 使得對所有 m, n > N, 對任意選取的 $\left(x_{ij}^*, y_{ij}^*\right) \in R_{ij}$ 均 有 $\left|\iint_R f\left(x,y\right) dA \sum_{i=1}^m \sum_{j=1}^n f\left(x_{ij}^*, y_{ij}^*\right) \triangle A\right| < \epsilon_o$

定理 15.1.3. 若 f 在 R 上有界, 且除了 R 中有限個平滑曲線外, f 在 R 上均爲連續, 則 f 在 R 上可積分。

例 15.1.4. 若 $R = \{(x,y) | -1 \le x \le 1, -2 \le y \le 2\}$, 求積分 $\iint_R \sqrt{1-x^2} dA$ 之值。

估計

- 例 15.1.5. (1) 估計 $z = 16 x^2 2y^2$ 在 $R = [0, 2] \times [0, 2]$ 上的體積。(取 n = m = 2, 並取右上方的點爲樣本點。)
- (2) 令 R 爲 xy-平面上的矩形 $0 \le x \le 2, 0 \le y \le 1$, 估計位於 R 之上, 且在平面 z = 4 x y 之下的立體之體積。
- **15.1.6.** 中點法 $\iint_R f(x,y) dA \approx \sum_{i=1}^m \sum_{j=1}^n f(\bar{x}_i, \bar{y}_j) \triangle A$ 其中 \bar{x}_i 爲 $[x_{i-1}, x_i]$ 的中點, \bar{y}_j 爲 $[y_{j-1}, y_j]$ 的中點。
- 例 15.1.7. 利用中點法估計 $\iint_R (x-3y^2) dA$, 其中 $R=[0,2]\times [1,2]$ 。
- 例 15.1.8. 利用下圖, 下雪量的等高線圖, 估計總下雪量。

性質

性質 15.1.9. (1) $\iint_{R} \left[f(x,y) + g(x,y) \right] dA = \iint_{R} f(x,y) dA + \iint_{R} g(x,y) dA$ 。

- (2) $\iint_{R} cf(x,y) dA = c \iint_{R} f(x,y) dA_{\circ}$
- (3) 若 $\forall (x,y) \in R, f(x,y) \ge g(x,y),$ 則 $\iint_R f(x,y) dA \ge \iint_R g(x,y) dA_\circ$
- 例 15.1.10. 證明: $0 \le \iint_R \sin \pi x \cos \pi y \, dA \le \frac{1}{32}$, 此處 $R = [0, \frac{1}{4}] \times [\frac{1}{4}, \frac{1}{2}]$ 。
- 例 15.1.11. 求 $\lim_{n\to\infty}\sum_{i=1}^n\sum_{j=1}^{n^2}\frac{1}{n^2}\frac{1}{\sqrt{n^2+ni+j}}$ 。

第 15 章 重積分 15.2 累次積分

15.2 累次積分(Iterated Integrals)

定義 15.2.1. 累次積分 (iterated integral) 爲

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx,$$
$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy.$$

例 15.2.2. 求 $\int_0^3 \int_0^2 x^2 y \ dy dx$ 及 $\int_0^2 \int_0^3 x^2 y \ dx dy$ 。

定理 15.2.3 (Fubini 定理初步型式). 若 f(x,y) 在矩形 $R: a \le x \le b, c \le y \le d$ 上有界, 且至多只在有限個平滑曲線上不連續,並且累次積分存在, 則

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy .$$

例 15.2.4. (1) 令 $R = [0,2] \times [1,2]$, 求 $\iint_R (x-3y^2) dA$ 。

(2) 令 $R = [1, 2] \times [0, \pi]$, 求 $\iint_R y \sin(xy) dA$ 。

例 15.2.5. 一立體由 $x^2 + 2y^2 + z = 16$ 、x = 2、y = 2 及座標面所圍成, 求其體積。

註 15.2.6. 若 $R = [a, b] \times [c, d]$, 則 $\iint_R g(x) h(y) dA = \int_a^b g(x) dx \cdot \int_c^d h(y) dy$ 。

例 15.2.7. 令 $R = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right]$, 求 $\iint_R \sin x \cos y \ dA$ 。

例 15.2.8. 令 $R = [-\pi, \pi] \times [-\pi, \pi]$, 求 $\iint_R (1 + x^2 \sin y + y^2 \sin x) dA$ 。

例 15.2.9. 若 f(x,y) 在 $[a,b] \times [c,d]$ 連續, 且 $g(x,y) = \int_a^x \int_c^y f(s,t) dt ds$, a < x < b, c < y < d, 求 $g_{xy\circ}$

例 15.2.10. 求 $\iint_R [x+y] dA$, 其中 $R = \{(x,y) | 1 \le x \le 3, 2 \le y \le 5\}$ 。

例 15.2.11. (Fubini 定理的反例) 求 $\int_0^1 \int_0^1 \frac{x-y}{(x+y)^3} dy dx$ 及 $\int_0^1 \int_0^1 \frac{x-y}{(x+y)^3} dx dy$ 。

15.3 有界非矩形區域上的雙重積分(Double Integrals over General Regions)

Fubini 定理

定義 15.3.1. 若 D 爲 \mathbb{R}^2 上有界集, f(x,y) 爲定義在 D 上的函數, 取一矩形 R 包含 D, 令

$$F(x,y) = \begin{cases} f(x,y) & (x,y) \in D \\ 0 & (x,y) \in R \setminus D, \end{cases}$$

則定義 f 在 D 上的重積分爲 $\iint_D f\left(x,y\right) dA = \iint_R F\left(x,y\right) dA$ 。

例 15.3.2. (1) 求 $\iint_{x^2+u^2<1} (\sin x + y^3 + 4) dA$ 。

(2) $\Leftrightarrow D \bowtie x^2 + y^2 \leq 1, \ \vec{x} \iint_D \sqrt{1 - x^2 - y^2} dA_{\circ}$

註 15.3.3. 兩種基本型式的區域:

(i) 第一型的平面區域為

$$D = \{(x,y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}\$$
 或記爲 $D : a \le x \le b, g_1(x) \le y \le g_2(x);$

(ii) 第二型的平面區域為

$$D = \{(x,y) \mid c \le y \le d, h_1(y) \le x \le h_2(y)\}$$
 或記爲 $D : c \le y \le d, h_1(y) \le x \le h_2(y)$ 。

- 定理 15.3.4 (Fubini 定理加強型). (1) 令 D 由 $a \le x \le b, g_1(x) \le y \le g_2(x)$ 所定義, 其中 g_1, g_2 爲 [a, b] 上的連續函數。若 f 在 D 上連續, 則 $\iint_D f(x, y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) dy dx$ 。
- (2) 令 D 由 $c \le y \le d, h_1(y) \le x \le h_2(y)$ 所定義, 其中 h_1, h_2 爲 [c, d] 上的連續函數。若 f 在 D 上連續, 則 $\iint_D f(x, y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) dx dy$ 。

定理 15.3.5. (重積分性質)

- (1) $\iint_{D} [f(x,y) + g(x,y)] dA = \iint_{D} f(x,y) dA + \iint_{D} g(x,y) dA_{\circ}$
- (2) $\iint_{D} cf(x,y) dA = c \iint_{D} f(x,y) dA_{\circ}$
- (3) 若在 D 上, $f(x,y) \ge g(x,y)$, 則 $\iint_D f(x,y) dA \ge \iint_D g(x,y) dA$ 。
- (4) 若 $D = D_1 \cup D_2$, D_1 及 D_2 至多只在邊界上相交, 則

$$\iint_{D} f(x,y) dA = \iint_{D_{1}} f(x,y) dA + \iint_{D_{2}} f(x,y) dA \circ$$

- (5) $\iint_D 1 dA = A(D)$, 此處 A(D) 表 D 的面積。
- (6) 若 $m \le f(x,y) \le M, \forall (x,y) \in D, 則 mA(D) \le \iint_D f(x,y) dA \le MA(D)$ 。
- 例 15.3.6. 令 D 爲以原點爲圓心, 半徑爲 2 的圓, 估計 $\iint_D e^{\sin x \cos y} dA$ 。

定理 15.3.7. (重積分的平均値定理) 設 D 為第一型或第二型的平面區域, 若 f 在 D 上連續, 則 存在 $(x_0, y_0) \in D$, 使得 $\iint_D f(x, y) dA = f(x_0, y_0) A(D)$, 其中 A(D) 為 D 的面積。

例 15.3.8. 設 f 在包含 (a,b) 的某個開區域上連續,令 B_r 是以 (a,b) 爲圓心,以 r 爲半徑的閉圓,證明 $\lim_{r\to 0} \frac{1}{\pi r^2} \iint_{B_r} f(x,y) dA = f(a,b)$ 。

- 例 15.3.9. (1) 令 D 是由 $y=2x^2$ 及 $y=1+x^2$ 所圍成的區域, 求 $\iint_D (x+2y) dA$ 。
- (2) 令 D 是由 y=x-1 及 $y^2=2x+6$ 所圍成的區域, 求 $\iint_D xydA$ 。
- 例 **15.3.10.** (1) 令 D 是由 y=2x 及 $y=x^2$ 所圍成的區域, 求在 $z=x^2+y^2$ 之下, 且在 D 之上之立體的體積。
- (2) 一個稜柱 (prism) 其底是由 x-軸, y=x 及 y=1 所圍成之三角形, 其頂是平面 z=3-x-y。 求其體積。

- (3) 求由 x + 2y + z = 2、x = 2y、x = 0、z = 0 所圍之四面體的體積。
- (4) 一立體以平面 $y=0,\,z=0,\,z=a-x-y$ 及柱面 $y=a-\frac{x^2}{a}$ 爲界, 其中 a 爲正數, 求其體積。

例 15.3.11. 令 D 爲 xy-平面上由 y=x,y=x+a,y=a 及 y=3a 所圍成之平行四邊形。求 $\iint_D (x^2+y^2)dA$ 。

例 15.3.12. 令 D 是半徑為 a, 圓心為 (a,a) 之圓與座標軸所圍成之區域。求 $\iint_D \frac{dA}{\sqrt{2a-x}}$.

例 15.3.13. 求 $\int_0^1 \int_0^1 e^{\max\{x^2,y^2\}} dy dx$ 。

調換積分次序

15.3.14. 在調換積分次序時, 第一步須將積分區域的圖畫出來, 第二步再利用圖形以不同次序描述該區域。

例 15.3.15. 描述 $\int_0^2 \int_{r^2}^{2x} (4x+2) dy dx$ 之積分區域, 並調換其積分次序。

例 15.3.16. (1) 求 $\int_0^1 \int_x^1 \sin(y^2) \, dy dx$ 。

- (2) $\Re \int_0^1 dx \int_{\sqrt{x}}^1 e^{y^3} dy$
- (3) $rac{1}{\sqrt{3}} \int_{0}^{1} \int_{\sin^{-1} y}^{\frac{\pi}{2}} \cos x \sqrt{1 + \cos^2 x} dx dy$

例 15.3.17. 令 D 爲 xy-平面上由 x-軸, y=x 及 x=1 所圍成之三角形。求 $\iint_D \frac{\sin x}{x} dA$ 。

例 15.3.18. 求 $\int_e^{e^2} \int_1^{\ln y} \frac{\sin x}{xy} dx dy + \int_{e^2}^{e^4} \int_{\frac{\ln y}{2}}^2 \frac{\sin x}{xy} dx dy$ 。

例 15.3.19. (1) 變換 $\int_0^{\frac{1}{2}} \int_{1-x^2}^{\sqrt{1-x^2}} f(x,y) dy dx$ 之積分次序。

- (2) 變換 $\int_{1}^{2} \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy dx$ 之積分次序。
- (3) 變換 $\int_0^{2a} \int_{\sqrt{2ax}-x^2}^{\sqrt{2ax}} f(x,y) dy dx$ 之積分次序。
- (4) 變換 $\int_0^1 \int_{\tan^{-1} x}^{\pi/4} f(x,y) dy dx$ 之積分次序。

例 15.3.20. 化簡 $\int_0^1 \int_0^{2y} f(x,y) dx dy + \int_1^3 \int_0^{3-y} f(x,y) dx dy$ 。

例 15.3.21. 證明 $\int_0^\infty \frac{\arctan \pi x - \arctan x}{x} dx = \frac{\pi}{2} \ln \pi$ 。

15.4 在極座標下的重積分(Double Integrals in Polar Coordinates)

定理 15.4.1. (極座標上的重積分) 令 R 爲極矩形 (polar rectangle), $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, 且 $0 \le \beta - \alpha \le 2\pi$ 。若 f 在 R 上連續,則 $\iint_R f(x,y) \, dA = \int_{\alpha}^{\beta} \int_a^b f(r\cos\theta, r\sin\theta) \, r dr d\theta$ 。

例 15.4.2. R 是在上半平面, 由 $x^2+y^2=1$ 及 $x^2+y^2=4$ 所圍成的區域。求 $\iint_R (3x+4y^2)\,dA$ 。

例 15.4.3. 求由 $z = 1 - x^2 - y^2$ 及 z = 0 所圍成的立體區域的體積。

定理 15.4.4. 考慮極平面上,由 $\theta = \alpha$, $\theta = \beta$ 及連續曲線 $r = g_1(\theta)$, $r = g_2(\theta)$ 所圍成的 區域 D, 此處設 $0 \le g_1(\theta) \le g_2(\theta)$, $\forall \theta \in [\alpha, \beta]$ 。設 $f(r, \theta)$ 爲 D 上的連續函數。則 $f(r, \theta)$ 在 D 上的重積分爲 $\iint_D f(r, \theta) dA = \int_{\theta = \alpha}^{\beta} \int_{r = g_1(\theta)}^{g_2(\theta)} f(r, \theta) r dr d\theta$ 。

- [註] 第十章之極座標面積公式爲此定理之特例。
- 例 **15.4.5.** (1) 令 D 爲 $r=1+\cos\theta$ 之內部, 且在 r=1 之外部。將 $f(r,\theta)$ 在 D 上的積分以 累次積分的形式寫出。
- (2) 利用重積分求四瓣玫瑰線 $r = \cos 2\theta$ 中一葉的面積。
- (3) 求雙紐線 $r^2 = 4\cos 2\theta$ 所圍之面積。
- 例 15.4.6. 令 D 爲第一象限中, 由 $x^2 + y^2 = 4$ 及 $y = \sqrt{2}$ 所圍成的上半區域, 求 $\iint_D x dA$ 。
- 例 15.4.7. (1) 一立體位於 $z=x^2+y^2$ 之下, 在 xy-平面之上, 且位於柱面 $x^2+y^2=2x$ 之內。 求其體積。
- (2) 一立體位於 $x^2 + y^2 + z^2 = 4a^2$ 及 $x^2 + y^2 = 2ay$ 之內, 其中 a > 0。求其體積。
- 例 15.4.8. 若 D 爲環狀 $0 < a^2 \le x^2 + y^2 \le b^2$ 位於第一象限, 且在 y = x 之下方的部份。求 $\iint_D \frac{y^2}{x^2} dA$ 。
- 例 15.4.9. (1) 將積分 $\int_0^1 \int_{1-x}^{\sqrt{1-x^2}} f(x,y) dy dx$ 改為極座標。
- (2) 將積分 $\int_0^2 \int_x^{\sqrt{3}x} f(x,y) dy dx$ 改爲極座標。
- 例 15.4.10. 將積分 $\iint_D f(x,y) dA$ 改為極座標, 其中 D 是由 $(x^2+y^2)^2 = a^2(x^2-y^2), a>0$ 所圍成的區域
- 例 15.4.11. 求 $\iint_D \sin(\sqrt{x^2+y^2}) dx dy$, 其中 D 為 $\pi^2 \le x^2+y^2 \le 4\pi^2$ 。
- 例 15.4.12. 求 $\int_{\frac{1}{\sqrt{2}}}^{1} \int_{\sqrt{1-x^2}}^{x} xydydx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xydydx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xydydx$ 。
- 例 15.4.13. (1) 令 D 爲 $y = \sqrt{1-x^2}$ 及 x 軸所圍的半圓。求 $\iint_D e^{x^2+y^2} dy dx$ 。
- $(2) \ \ \, \mbox{$\vec{x}$} \ I = \int_{-\infty}^{\infty} e^{-x^2} dx_{\circ}$
- $(4) \ \ \ \, \ \, \vec{x} \ \int_{-\infty}^{\infty} x^n e^{-x^2} dx_{\circ}$
- (5) 求 $\int_0^\infty \sqrt{x}e^{-x}dx$ 。
- 例 15.4.14. 求 $\int_{\tan^{-1} 2}^{\frac{\pi}{2}} \int_{0}^{\frac{3}{\cos\theta+\sin\theta}} r^3 \cos\theta \sin\theta dr d\theta$ 。

15.5 雙重積分的應用(Applications of Double Integrals)

面積

15.5.1. 一個封閉有界平面區域 D 的面積為 $A = \iint_D dA$ 。

例 15.5.2. 求平面上由 y = x 及 $y = x^2$ 在第一象限所圍的面積。

例 15.5.3. 求抛物線 $y = x^2$ 及直線 y = x + 2 所圍區域 D 之面積。

平均值

定義 15.5.4. 函數 f 在區域 D 上的平均值為 $\frac{1}{D \text{ biniff}} \iint_D f dA$ 。

例 15.5.5. (a) 求 $f(x,y) = x \cos xy$ 在 $D: 0 \le x \le \pi, 0 \le y \le 1$ 上的平均值。

(b) 求函數 $f(x) = \int_{x}^{1} \cos(t^{2}) dt$ 在 [0,1] 上的平均值。

例 15.5.6. 若區域 D 的面積爲 A, 則 f(x) = x 在 D 上的平均值即爲形心之 x-座標。

例 15.5.7. (a) 取一正數 c, 將其分爲兩部分, 求此兩部分之乘積的平均值。

(b) 取一正數 c,將其分爲三部分,求此三部分之乘積的平均值。

力矩與質心

定義 15.5.8. 一薄片位於 xy-平面上的區域 D, 在 (x,y) 的密度為 $\rho(x,y)$, 其中 ρ 為連續函數。

- (a) 其質量爲 $M = \iint_D \rho(x, y) dA$ 。
- (b) 對 x-軸的一次矩 (first moment) 爲 $M_x = \iint_D y \rho(x,y) dA$, 對 y-軸的一次矩爲 $M_y = \iint_D x \rho(x,y) dA$ 。
- (c) 質心 (center of mass) 為 $\overline{x} = \frac{M_y}{M}$, $\overline{y} = \frac{M_x}{M}$.
- (d) 一個幾何圖形, 視爲 $\delta(x,y)=1$ 的薄片, 則其質心爲形心 (centroid)。

例 **15.5.9.** 在 xy-平面上, 由 x-軸, x = 1 及 y = 2x 在第一象限所圍的三角形上有一薄片, 其密度爲 $\rho(x,y) = 6x + 6y + 6$ 。求質量, 一次矩及質心。

例 **15.5.10.** 一三角形之頂點爲 (0,0)、(1,0)、(0,2),其密度爲 $\rho(x,y)=1+3x+y$ 。求其質量及質心。

例 15.5.11. 一個半圓的薄片, 其密度與離圓心的距離成正比。求其質心。

例 15.5.12. 在第一象限中, 以 y = x 爲上界, 以 $y = x^2$ 爲下界的區域 D, 求其形心。

二次矩

定義 15.5.13. (a) 對 x-軸的二次矩 (second moment, moment of inertia) 爲 $I_x = \iint_D y^2 \rho(x,y) dA$ 。

- (b) 對 y-軸的二次矩爲 $I_y = \iint_D x^2 \rho(x,y) dA$ 。
- (c) 對直線 L 的二次矩爲 $I_L = \iint_D r^2 \rho(x,y) dA$, 其中 r 爲 (x,y) 到 L 的距離。
- (d) 對原點的二次矩 (極力矩, polar moment of inertia) 爲 $I_0 = \iint_D (x^2 + y^2) \rho(x, y) dA$ 。

- (e) 迴轉半徑 (radius of gyration): 對 x-軸爲 $\overline{y} = \sqrt{I_x/M}$, 對 y-軸爲 $\overline{x} = \sqrt{I_y/M}$, 對原點爲 $R_0 = \sqrt{I_0/M}$ 。
- (f) 對一個軸的迴轉半徑 R 滿足 $mR^2 = I$, 此處 I 是對給定軸的二次矩。

註

- (1) 一個薄片的 $(\overline{x}.\overline{y})$ 可視爲質量的集中點, 而不影響該薄片的二次矩。
- (2) 因 $r^2 = x^2 + y^2$, 故 $I_0 = I_x + I_y$ 。 I_0 一般記爲 I_z 。 $I_z = I_x + I_y$ 稱爲 垂直軸定理 (Perpendicular Axis Theorem)。
- (3) 迴轉半徑 (radius of gyration) 滿足 $I_x=M\overline{\overline{y}}^2,\,I_y=M\overline{\overline{x}}^2,\,I_0=MR_0^2$ 。

例 15.5.14. D 爲一個均匀的圓盤, 中心在原點, 半徑爲 a。若密度爲 $\rho(x,y)=\rho$, 求 I_x , I_y 及 I_0 , 並求對 x-軸的迴轉半徑。

例 **15.5.15.** 在 xy-平面上, 由 x-軸, x = 1 及 y = 2x 在第一象限所圍的三角形上有一薄片, 其密度爲 $\delta(x,y) = 6x + 6y + 6$ 。求二次矩及迴轉半徑。

例 15.5.16. D 爲圓 $x^2 + y^2 = 1$ 之內部在第一象限中的部分。若一薄片之密度爲 $\delta(x,y) = 1$, 形狀爲 D, 求極力矩 I_0 。

電量

15.5.17. 若電荷分佈在 D 上, 電荷密度 (charge density) 爲 $\sigma(x,y)$, 則總電量 (total charge) 爲 $Q = \iint_D \sigma(x,y) dA$ 。

例 15.5.18. D 是由 x = 1, y = 1 - x 所圍成的區域, 其上的電荷密度為 $\sigma(x, y) = xy(C/m^2)$, 求總電量。

機率

定義 15.5.19. 有兩個連續的隨機變數 (random variable) X 及 Y, 其聯合密度函數 (joint density function) 爲 f(x,y) 滿足 $P((x,y) \in D) = \iint_D f(x,y) \, dA$ 。

[註] 若 f(x,y) 是聯合密度函數, 則

- (1) $f(x,y) \ge 0_{\circ}$
- (2) $\iint_{\mathbb{R}^2} f(x, y) dA = 1_{\circ}$

例 15.5.20. 若 X 及 Y 的聯合密度函數爲

$$f\left(x,y\right) = \begin{cases} C\left(x+2y\right) & (x,y) \in [0,10] \times [0,10] \\ 0 & \text{ 其他 } . \end{cases}$$

求 C 之值, 並求 $P(X \le 7, Y \ge 2)$ 。

定義 15.5.21. 令 X 的機率密度函數 (probability density function) 是 $f_1(x)$, Y 的機率密度函數是 $f_2(x)$, 當 X、Y 的聯合密度函數爲 $f(x,y) = f_1(x) f_2(y)$, 則稱 X 及 Y 是獨立的隨機變數 (independent random varibles)。

例 15.5.22. 一個戲院經理算出每個客人買票平均等候時間是 10 分,買爆米花平均要 5 分鐘。假設這兩個時間是獨立的,則一個客人花 20 分鐘以內進到戲院的機率是多少?

(註: 等候時間的模式是 $f(t) = \begin{cases} 0 & t < 0 \\ \frac{1}{\mu}e^{-\frac{t}{\mu}} & t \ge 0, \end{cases}$ 其中 μ 是平均等候時間。)

定義 15.5.23. 隨機變數 $X \setminus Y$ 的聯合密度函數爲 f(x,y), 則 X-期望値(X-mean, expected value) 爲

$$\mu_x = \iint_{\mathbb{R}^2} x f(x, y) \, dA$$

及 Y-期望值為

$$\mu_{y} = \iint_{\mathbb{R}^{2}} y f(x, y) dA .$$

例 15.5.24. 一工廠生產圓柱形軸承, 直徑 4.0 cm、長 6.0 cm。實際上產品尺寸呈正規分佈, 直徑 X 的平均值是 4 cm、標準差是 0.01 cm, 長度 Y 的的平均值是 6 cm、標準差是 0.01 cm。假設 X 及 Y 是獨立的,從生產線上任取一個產品,它的直徑或長超過 平均值 0.02 cm 的機率是多少? (註: 正規分佈的模式是 $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$,其中 μ 是期望值, σ 是標準差。)

15.6 曲面之表面積(Area of Surfaces)

定理 15.6.1. 若 S 是由 $z=f(x,y),(x,y)\in D$ 所定義。 f 有連續的偏導函數。則 S 之面積爲

$$A\left(S\right) = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA \ .$$

[註] 若 $f(x) \ge 0$ 且 f'(x) 爲連續, 將曲線 $y = f(x), a \le x \le b$ 繞 x 軸旋轉所得旋轉面 S, 其表面積爲 $A = 2\pi \int_a^b f(x) \sqrt{1 + (f'(x))^2} dx$

例 15.6.2. 令 T 爲 xy-平面上頂點爲 (0,0),(1,0) 及 (1,1) 之三角形區域, 求曲面 $z=x^2+2y$ 位於 T 以上的部分面積。

例 15.6.3. 求曲面 $z = 1 + x + x^2 + y$ 在 $R = [-2, 1] \times [-1, 1]$ 上的表面積。

例 15.6.4. (1) 求曲面 $z = x^2 + y^2$ 在 z = 9 之下的部分面積。

(2) 求曲面 $z = x^2 - y^2$ 位於 $x^2 + y^2 = a^2$ 之內的部分面積。

例 15.6.5. 求錐面 $z = \sqrt{x^2 + y^2}$, 0 < z < 1 之表面積。

例 15.6.6. 求柱面 $x^2 + y^2 = 1$ 與 $x^2 + z^2 = 1$ 相交部份之表面積。

直角座標系下的三重積分(Triple Integrals in Rectangle Coordinates)

定義 15.7.1. (1) 令 f(x,y,z) 爲 $B = [a,b] \times [c,d] \times [r,s]$ 上的函數, 將 B 分割成 lmn 個子 立方體, $B_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k]$ 。則 $\triangle V = \triangle x \triangle y \triangle z$,在 B_{ijk} 中任取一 個樣本點 $(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*)$, 則得一個三重 Riemann 和 $\sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n f\left(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*\right) \triangle V$ 。

(2) f 在 B 上的三重積分 (triple integral) 爲

$$\iiint_{B} f(x, y, z) dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \triangle V_{\circ}$$

若此極限存在, 則稱 F(x,y,z) 在 B 上可積分。

定理 15.7.2. (Fubini 定理): 若 f 在 $B = [a,b] \times [c,d] \times [r,s]$ 上連續, 則 $\iiint_B f(x,y,z) dV =$ $\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dx dy dz_{\circ}$

例 15.7.3. 若 $B = [0,1] \times [-1,2] \times [0,3]$, 求 $\iiint_B xyz^2 dV$ 。

定義 15.7.4. 若 E 爲空間中一立體, 取一立方體 B 包含 E, 令

$$F(x,y,z) = \begin{cases} f(x,y,z) & (x,y,z) \in E \\ 0 & (x,y,z) \in B \setminus E \end{cases}$$

則定義 $\iiint_{E} f(x, y, z) dV = \iiint_{B} F(x, y, z) dV$ 。

定義 15.7.5. 空間中的有界閉區域 E 之體積爲 $V = \iiint_E dV$ 。

定理 15.7.6 (三重積分的性質). 若 f(x,y,z) 及 g(x,y,z) 爲 E 上的連續函數,則:

- (1) $\iiint_E kf dV = k \iiint_E f dV_{\circ}$
- (2) $\iiint_E (f \pm g) dV = \iiint_E f dV \pm \iiint_E g dV_{\circ}$
- (3) 若在 E 上, $f(x,y,z) \ge 0$, 則 $\iiint_E f dV \ge 0$ 。
- (4) 若在 E 上, $f(x,y,z) \ge g(x,y,z)$, 則 $\iiint_E f dV \ge \iiint_E g dV$ 。
- (5) 若 E 是兩個不重疊區域 E_1 及 E_2 之聯集, 則 $\iiint_E f dV = \iiint_{E_1} f dV + \iiint_{E_2} f dV$ 。
- 註 **15.7.7.** (1) 立體區域 E 稱爲 type 1, 若 $E = \{(x,y,z) \mid (x,y) \in D, u_1(x,y) \leq z \leq u_2(x,y)\}$ 。 若 f 在 E 上連續,則 $\iiint_E f(x,y,z) \, dV = \iint_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \right] dA$ 。 更進一步:

若 D 爲 xy-平面上的 type I, 即 $D = \{(x,y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$, 則

- (2) 立體區域 E 稱爲 type 2, 若 $E = \{(x,y,z) \mid (y,z) \in D, u_1(y,z) \le x \le u_2(y,z)\}$ 。此時 $\iiint_E f(x,y,z) \, dV = \iiint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) \, dx \right] dA$ 。
- (3) 立體區域 E 稱爲 type 3, 若 $E = \{(x,y,z) \mid (x,z) \in D, u_1(x,z) \leq y \leq u_2(x,z)\}$ 。此 時 $\iiint_E f(x,y,z) dV = \iiint_D \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dA$ 。
- 例 15.7.8. (1) 一四面體 T 由平面 x + 2y + z = 2、x = 2y、x = 0、z = 0 所圍成, 求 T 的體 $\hat{\pi}$ 。
- (2) 令 E 爲 x=0,y=0,z=0,x+y+z=1 所圍成立方體, 求 $\iiint_E z dV$ 。
- (3) 令 E 爲 $y = x^2 + z^2$ 及 y = 4 所圍成的區域, 求 $\iiint_E \sqrt{x^2 + z^2} dV$ 。
- 例 15.7.9. 求 $\iiint_{x^2+y^2+z^2<1}(2+x+\sin z)dV_{\circ}$
- 例 **15.7.10.** E 是一個以 (0,0,0), (1,1,0), (0,1,0), (0,1,1) 爲頂點的四面體, 欲求其體積。以 6 種不同的積分次序寫出其積分式, 並求其體積。
- 例 15.7.11. (1) 將 $\int_0^1 \int_y^1 \int_0^z f(x,y,z) dx dz dy$ 以其他五種積分順序表出。
- (2) 將 $\int_0^1 \int_0^{1-z} \int_0^2 dx dy dz$ 以其他五種積分順序表出。
- (3) 將 $\int_0^1 \int_0^{x^2} \int_0^y dz dy dx$ 以其他五種積分順序表出。
- (4) 將 $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{1} dz dy dx$ 表成其他五種積分順序。
- 例 15.7.12. 將以下積分以其他五種積分順序表出。
- (1) $\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x,y,z) dz dy dx$.
- (2) $\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x,y,z) dy dz dx$
- (3) $\int_0^1 \int_y^1 \int_0^y f(x, y, z) dz dx dy$.
- 例 15.7.13. 證明 $\int_0^x \int_0^y \int_0^z f(t)dtdzdy = \frac{1}{2} \int_0^x (x-t)^2 f(t)dt$ 。

15.8 三重積分之應用(Applications of Triple Integrals)

定義 15.8.1.
$$F(x,y,z)$$
 在 E 上的平均值為 $\frac{F$ 在 E 上的積分 E 的體積 $=\frac{\iiint_E F dV}{\iiint_E dV}$ 。

例 15.8.2. 令 B 爲 x=2, y=2 及 z=2 在第一卦限所圍的區域, 求 f(x,y,z)=xyz 在其上的平均值。

定義 15.8.3. 某立體位於空間中的區域 E, 且其密度函數爲 $\rho(x,y,z)$, 則:

(1) 其質量爲 $M = \iiint_E \rho(x, y, z) dV$ 。

(2) 對三個座標面的一次矩分別為

$$M_{yz} = \iiint_E x \rho(x, y, z) dV, M_{xz} = \iiint_E y \rho(x, y, z) dV, M_{xy} = \iiint_E z \rho(x, y, z) dV .$$

- (3) 令 $\bar{x}=\frac{M_{yz}}{M},\ \bar{y}=\frac{M_{xz}}{M},\ \bar{z}=\frac{M_{xy}}{M},\$ 則質心 座標爲 $(\bar{x},\bar{y},\bar{z})$ 。若密度爲常數,則質心稱爲形心(centroid)。
- (4) 對三個座標軸的二次矩分別為

$$I_x = \iiint_E (y^2 + z^2) \rho(x, y, z) dV, I_y = \iiint_E (x^2 + z^2) \rho(x, y, z) dV, I_z = \iiint_E (x^2 + y^2) \rho(x, y, z) dV .$$

- (5) 對直線 L 的轉動慣量爲 $I_L = \iiint_E r^2 \rho(x,y,z) dV$, 其中 r(x,y,z) 爲 (x,y,z) 到直線 L 的 距離 。因此 (4) 即爲 E 對三個座標軸的轉動慣量。
- (6) 若 E 上的電荷密度爲 $\sigma(x,y,z)$, 則總電荷 $Q = \iiint_E \sigma(x,y,z) dV$ 。
- (7) 令 X, Y, Z 為三個連續的隨機變數, 且它們的聯合密度函數為 f(x, y, z), 則機率 $P((X, Y, Z) \in E) = \iiint_E f(x, y, z) dV$ 。此處 $f(x, y, z) \ge 0$ 且 $\iiint_{\mathbb{R}^3} f(x, y, z) dV = 1$ 。
- 例 15.8.4. 一立體以曲面 $x = y^2$ 及平面 x = z、 z = 0、 x = 1 爲界, 求其形心。
- 例 15.8.5. 一個立方體 $E:-\frac{a}{2} \leq x \leq \frac{a}{2}, -\frac{b}{2} \leq y \leq \frac{b}{2}, -\frac{c}{2} \leq z \leq \frac{c}{2},$ 密度 ρ 爲常數, 求 I_x 、 I_y 、 I_z 。
- 例 15.8.6. 求由 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ 與座標面所圍成四面體的形心。
- 例 15.8.7. 一個密度均匀的立體是位於 $x^2 + y^2 + z^2 = 4a^2$ 之內部及 $x^2 + y^2 = a^2$ 之外部, 求 其對 z-軸轉動慣量。
- 例 15.8.8. 一個立體由 $x^2+z^2=a^2,\,y^2+z^2=a^2,\,z\geq 0$ 所圍成, 求其形心。
- 例 15.8.9. 一個立體 E 其下界是在 z=0 平面上的圓 $x^2+y^2 \le 4$,其上界爲 $z=4-x^2-y^2$ 。 密度 δ 爲常數,求質心 。
- 15.9 柱面座標與球面座標上的三重積分 (Triple Integrals in Cylindrical and Spherical Coordinates)

柱面座標

定義 15.9.1. 空間中任一點 P 的柱面座標 (cylindrical coordinate system) 爲 (r, θ, z) , 其中

- (1) (r,θ) 爲 P 在 xy-平面之投影 (x,y) 的極座標。
- (2) z 即爲直角座標之 z。

註 **15.9.2.** (1) P 的直角座標 (x, y, z) 與其柱面座標 r, θ, z 的關係爲

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

以及

$$r^2 = x^2 + y^2, \quad \tan \theta = \frac{y}{x}.$$

(2) 在柱面座標中, r=c 爲以 z-軸爲軸, 半徑爲 c 之圓柱面; $\theta=c$ 爲包含 z 軸之平面; z=c 爲 垂直於 z 軸之平面。

例 15.9.3. (1) 畫出柱面座標 $(2, \frac{2\pi}{3}, 1)$ 表示之點, 並求其直角座標。

(2) 將直角座標 (3, -3, 7) 轉換爲柱面座標。

例 15.9.4. 描述柱面座標方程式 z=r 之曲面。

定理 15.9.5. 若空間中的立體可用柱面座標表示為 $E = \{(x, y, z) | (x, y) \in D, u_1(x, y) \leq z \leq u_2(x, y)\}$, 而 $D = \{(r, \theta) | \alpha \leq \theta \leq \beta, h_1(\theta) \leq r \leq h_2(\theta)\}$, 則函數 f(x, y, z) 在 E 上的積分為

$$\iiint_E f(x,y,z)dV = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta,r\sin\theta)}^{u_2(r\cos\theta,r\sin\theta)} f(r\cos\theta,r\sin\theta,z)r\,dz\,dr\,d\theta.$$

例 15.9.6. D 爲一空間中的區域, 其底爲平面 z=0, 側面爲圓柱 $x^2+(y-1)^2=1$, 上界爲 $z=x^2+y^2$, 而 $f(r,\theta,z)$ 爲 D 上以柱面座標表示的函數。將 f 在 D 上的積分式寫出。

例 15.9.7. 一個水瓶分成上下兩部份: 上半是柱面座標曲面, $r=1+(z-\sqrt{3})^2$, $\sqrt{3} \le z \le 1+\sqrt{3}$; 下半是球面截去兩端, $x^2+y^2+z^2=4$, $-\sqrt{3} \le z \le \sqrt{3}$ 。求此瓶的容積。

例 15.9.8. 一個立體由 $x^2 + y^2 = 4$ 圍成, 上界是 $z = x^2 + y^2$, 下界是 xy-平面。求其形心。

例 15.9.9. E 爲在 $x^2 + y^2 = 1$ 之內,以 z = 4 爲上界、以 $z = 1 - x^2 - y^2$ 爲下界之立體。任一點的密度與它和柱面之軸的距離成正比,求其質量。

例 15.9.10. 求
$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2+y^2) dz dy dx$$
。

球面座標

定義 15.9.11. 空間中任一點 P 之球面座標 (spherical coordinate) 爲 (ρ, θ, ϕ) , 其中

- (1) ρ 爲 P 到原點的距離。
- (2) θ 爲柱面座標的 θ (0 < θ < 2π)。
- (3) ϕ 爲 \overrightarrow{OP} 與正 z-軸的夾角 $(0 < \phi < \pi)$ 。

註 **15.9.12.** (1) 柱面座標中的 $r = \rho \sin \theta$, 而 P 的直角座標 (x, y, z) 與其球面座標 (ρ, θ, ϕ) 的關係爲

$$\begin{cases} x = r \cos \theta = \rho \sin \phi \cos \theta \\ y = r \sin \theta = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases}$$

以及

$$\rho^2 = x^2 + y^2 + z^2 = r^2 + z^2.$$

- (2) 在球面座標中, $\rho = c$ 爲一半徑 c 的球面; $\phi = c$ 爲一半錐面; $\theta = c$ 爲一半平面。
- 例 15.9.13. (1) 畫出球面座標為 $(2, \frac{\pi}{4}, \frac{\pi}{3})$ 之點, 並求其直角座標。
 - (2) 一點之直角座標爲 $(0, 2\sqrt{3}, -2)$, 求其球面座標。
- 例 15.9.14. (1) 求球 $x^2 + y^2 + (z-1)^2 = 1$ 之球面座標方程式。
- (2) 求錐面 $z = \sqrt{x^2 + y^2}$ 之球面座標方程式。

定理 15.9.15. 若 E 為球面座標下的圓楔形 (spherical wedge), 即 $E = \{(\rho, \theta, \phi) | a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}$, 則

$$\iiint_E f(x,y,z)dV = \int_c^d \int_\alpha^\beta \int_a^b f(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\phi)\rho^2\sin\phi d\rho d\theta d\phi_0$$

- 例 15.9.16. (1) 令 B 爲單位球, 求 $\iiint_B e^{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}} dV$ 。
- (2) 求 $\iiint_D \sqrt{x^2 + y^2 + z^2} dV$, 其中 $D \in x^2 + y^2 + z^2 = z$ 所圍成的立體。
- 例 15.9.17. 一立體位於 $x^2 + y^2 + z^2 = z$ 之下, 且位於 $z = \sqrt{x^2 + y^2}$ 之上, 求其體積。
- 例 15.9.18. (a) 將球 $\rho \le 1$ 以錐面 $\phi = \frac{\pi}{3}$ 切之, 得一甜筒。求其體積。
- (b) 若密度 $\delta = 1$, 求它對 z 軸的轉動慣量。
- 例 15.9.19. 一立體位於 $x \ge 0$, $y \ge 0$, $z \ge 0$, $x^2 + y^2 + z^2 \le a^2$, 若一點與原點的距離爲 ρ , 其密度爲 $k\rho$, 求其重心。
- 例 15.9.20. 求函數 $f(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + (z-a)^2}}$ 在球殼 $0 < r \le \sqrt{x^2 + y^2 + z^2} \le 1$ 上的平均值。
- 例 15.9.21. 求曲面 $(x^2 + y^2 + z^2)^2 = a^2(x^2 + y^2 z^2)$, a > 0, 所圍之立體的體積。
- 例 15.9.22. 求 $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} z^2 dz dy dx$ 。
- 例 15.9.23. 求 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^2 + y^2 + z^2} e^{-\sqrt{x^2 + y^2 + z^2}} dz dy dx$ 。
- 例 15.9.24. 令 $f(x,y,z) = \begin{cases} \frac{a^2x^2+b^2y^2+c^2z^2}{(x^2+y^2+z^2)^2} & (x,y,z) \neq (0,0,0) \\ (x,y,z) = (0,0,0), \end{cases}$ 其中 a,b,c 爲常數, $a^2 + (x,y,z) = (0,0,0)$

 $b^2 + c^2 > 0$ 。對 $\epsilon \in (0,1)$,令 $B_{\epsilon} = \{(x,y,z)|0 < \epsilon \leq (x^2 + y^2 + z^2)^{\frac{1}{2}} \leq 1\}$,求 $\lim_{\epsilon \to 0^+} \iiint_{B_{\epsilon}} f(x,y,z) dV$ 。

- 例 15.9.25. (a) 求 $\iint_D \frac{dA}{(x^2+y^2)^{\frac{n}{2}}}$, 其中 n 爲整數, D 爲圓心爲原點, 半徑爲 r 及 R 所成的環狀面。
- (b) 在上題中, $r \to 0+$ 時, 極限爲何?
- (c) 求 $\iiint_D \frac{dA}{(x^2+y^2+z^2)^{\frac{n}{2}}}$, 其中 n 爲整數, D 爲圓心爲原點, 半徑爲 r 及 R 所成的環狀體。
- (d) 在上題中, $r \to 0+$ 時, 極限爲何?
- 例 15.9.26. Laplace 方程是 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial z^2} = 0$ 。
- (a) 在柱面座標下 Laplace 方程可寫成 $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0$ 。
- (b) 在球面座標下 Laplace 方程可寫成 $\frac{\partial^2 u}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial u}{\partial \rho} + \frac{\cot \phi}{\rho^2} \frac{\partial u}{\partial \phi} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2} + \frac{1}{\rho^2 \sin^2 \phi} \frac{\partial^2 u}{\partial \theta^2} = 0$ 。

15.10 重積分的變數變換

- 定義 15.10.1. (1) 一個從 uv-平面到 xy-平面的變換 (transformation) 是一個函數 $T: S \to \mathbb{R}^2$ ($S \in \mathbb{R}^2$ 的子集),記爲 T(u,v) = (x,y),而 x = g(u,v),y = h(u,v)。
 - (2) 若 $T(u_1, v_1) = (x_1, y_1)$, 則 (x_1, y_1) 稱爲 (u_1, v_1) 的寫像(image), 若 T(S) = R, 則 R 稱爲 S 的寫像。
 - (3) 若沒有兩個相異點有相同的寫像, 則稱 T 爲一對一 (one to one)。
 - (4) 若 T 爲一對一, 則 T 有反變換 (inverse transformation) T^{-1} 從 xy-平面對應到 uv-平面。

例 15.10.2. 一個變換之定義爲 $x=u^2-v^2,\,y=2uv,\,S=\{(u,v)\mid 0\leq u\leq 1,0\leq v\leq 1\}$ 。求 S 的寫像。

例 15.10.3. 一個變換之定義爲 $x=v, y=u(1+v^2), 求 S=\{(u,v)\mid 0\leq u\leq 1, 0\leq v\leq 1\}$ 的寫像。

定義 15.10.4. 變換 T(u,v) 定義爲 x = g(u,v), y = h(u,v), 則其 Jacobian 爲 $\frac{\partial(x,y)}{\partial(u,v)} = \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right|$ 。

定義 15.10.5. 一個變換 T(u,v) = (g(u,v),h(u,v)) 若滿足 g 及 h 都有連續的一階偏導函數, 則 T 稱爲 C^1 變換。

定理 15.10.6. 各符號如同前述。假設

- (i) $T \in C^1$ 變換, 其 Jacobian 只可能在孤立點 (isolated point) 爲零。
- (ii) T 將 uv-平面上的區域映成 (map onto) xy-平面上的區域 R。
- (iii) 除了在 S 的邊界外, T 是一對一。
- (iv) f(x,y) 在 R 上連續。

則
$$\iint_{R} f(x,y) dA = \iint_{S} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv_{\circ}$$

例 15.10.7. 將直角座標變換爲極座標, 其 Jacobian 爲 r。

例 15.10.8. 利用變換 $x=u^2-v^2,\,y=2uv,\,$ 求積分 $\iint_R y dA,\,$ 此處 R 是由 x-軸, $y^2=4-4x$ 及 $y^2=4+4x,\,y\geq 0$ 所圍成的區域。

例 15.10.9. 求四個抛物線 $y = x^2$, $y = 2x^2$, $x = y^2$ 及 $x = 3y^2$ 所圍成的區域面積。

例 15.10.10. (1) 令 R 是以 (0,0),(a,0),(0,a) 為頂點之三角形, 求 $\iint_R \sqrt{x+y} dA$ 。

- (2) 令 R 是由 xy = 1, xy = 5, x = 1, x = 6 所圍成, 求 $\iint_{R} \frac{xy}{1+x^2y^2} dA$ 。
- (3) R 是以 (1,0)、(2,0)、(0,-2)、(0,-1) 爲頂點的梯形 (traperodial), 求 $\iint_R e^{\frac{x+y}{x-y}} dA$ 。
- (4) 令 R 是以 (4,0),(6,2),(4,4),(2,2) 爲頂點之四邊形, 求 $\iint_R (x+y)e^{x-y}dA$ 。
- (5) 若 R 爲 x-軸, y=x 及 $x^2+4y^2=4$ 在第一象限所圍成的區域, 求 $\iint_{D} \frac{y}{x} dA$

例 15.10.11. (1) 令 R 爲橢圓 $9x^2 + 4y^2 = 1$ 在第一象限的內部, 求 $\iint_R \sin(9x^2 + 4y^2) dA$ 。

(2) 令 R 爲 $x^2 - xy + y^2 = 2$ 所圍區域, 求 $\iint_R (x^2 - xy + y^2) dA$ 。

例 15.10.12. (1) 求 $\int_0^4 \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dx dy$ 。

(2) $rac{1}{\sqrt{x}} \int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y} (y-2x)^{2} dy dx$

例 15.10.13. 若 f 在 [0,1] 上連續, 且 R 是以 (0,0),(1,0),(0,1) 爲頂點之三角區域, 證明 $\iint_{R} f(x+y)dA = \int_{0}^{1} uf(u)du_{\circ}$

定義 15.10.14. 若 $\begin{cases} x = g(u,v,w) \\ y = h(u,v,w) & \text{將 } uvw\text{- 空間中區域 } G \text{ —對一地對應到 } xyz\text{-空間中的} \\ z = k(u,v,w) \end{cases}$ $D \text{ , 其 Jacobian 爲 } \frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} \text{.}$

$$D, \\ \sharp \text{ Jacobian } \underset{\partial(u,v,w)}{\not \boxtimes} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

定理 15.10.15. 若 f(x,y,z) 爲 R 上的連續函數, g,h,k 有連續的偏導函數, 則 $\iiint_R f\left(x,y,z\right)dV=$ $\iiint_{S} f\left(x\left(u,v,w\right),y\left(u,v,w\right),z\left(u,v,w\right)\right) \left|\frac{\partial\left(x,y,z\right)}{\partial\left(u,v,w\right)}\right| du dv dw_{\bullet}$

例 15.10.16. (1) 直角座標變換爲柱面座標的 Jacobian 是 r。

(2) 直角座標變換爲球面座標的 Jacobian 是 $\rho^2 \sin \varphi$ 。

例 15.10.17. 求
$$\int_0^3 \int_0^4 \int_{\frac{y}{2}}^{\frac{y}{2}+1} \left(\frac{2x-y}{2} + \frac{z}{3}\right) dx dy dz$$
。

例 15.10.18. 求 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} \le 1$ 之體積。

例 15.10.19. 求區域 E 使得積分 $\iiint_E (1-x^2-2y^2-3z^2)dV$ 之值爲最大, 並求此最大值。

例 15.10.20. 平面 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, a > 0, b > 0, c > 0, 將 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 切成兩部份, 求較 小部份的體積。

例 15.10.21. (1) 區域 E 位於平面 z=3-2y 之下, 抛物面 $z=x^2+y^2$ 之上, 求其體積。

- (2) 區域 E 是由 $z = x^2 + 3y^2$ 及 $z = 8 x^2 y^2$ 所圍成的, 求其體積。
- (3) 區域 E 是由 $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$ 與座標面所圍成的, 求其體積。

例 15.10.22. 令 E 是由 -x+y+z=0, x-y+z=0, x+y-z=0 及 -x+5y+7z=6圍成的四面體。

- (a) 求 E 的體積。
- (b) 求 $\iiint_E z dV$ 。

例 15.10.23. 令 $D = \{(x, y, z) | 2x^2 + 3y^2 + 6yz + 5z^2 + 2xz \le 1\}$, 求 $\iiint_D (x + y + z)^2 dV$ 。

例 15.10.24. (a) 證明
$$\int_0^1 \int_0^1 \frac{1}{1-xy} dx dy = \sum_{n=1}^\infty \frac{1}{n^2}$$
。

- (b) 證明 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ 。
- 例 15.10.25. (a) 證明 $\int_0^1 \int_0^1 \frac{1}{1-xyz} dx dy dz = \sum_{n=1}^{\infty} \frac{1}{n^3}$.
- (b) 證明 $\int_0^1 \int_0^1 \int_0^1 \frac{1}{1+xyz} dx dy dz = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3}$ 。