Basic Algebra (Solutions)

by Huah Chu

Exercises $(\S1.9, p.62)$

1. Let $G = (\mathbb{Q}, +, O), K = \mathbb{Z}$. Show that $G/K \simeq$ the group of complex numbers of the form $e^{2\pi i\theta}, \theta \in \mathbb{Q}$, under multiplication.

Proof. Define a homomorphism $\phi : G \to \{e^{2\pi i\theta} | \theta \in \mathbb{Q}\}$ by $\theta \to e^{2\pi i\theta}$. Then ker $\phi = K$ and ϕ is surjective.

2. Show that $a \to a^{-1}$ is an automorphism of a group G if and only if G is abelian, and if G is abelian, then $a \to a^k$ is an endomorphism for every $k\mathbb{Z}$.

Proof. (1) $\phi: a \to a^{-1}$ is an automorphism \Leftrightarrow For all $a, b \in G$, $(ab)^{-1} = \phi(ab) = \phi(a)\phi(b) = a^{-1}b^{-1}$. \Leftrightarrow For all $a, b \in G$, ab = ba, that is, G is abelian. (2) G is abelian. From $(ab)^k = a^k b^k$, we have $a \to a^k$ is an endomorphism.

3. Determine Aut G for (i) G an infinite cyclic group, (ii) a cyclic group of order six, (iii) for any finite cyclic group.

Sol. (i) Let $G = \langle a \rangle$ be an infinite cyclic group. The generators of G are a and a^{-1} . Hence, for $\phi \in \operatorname{Aut} G$, $\phi(a) = a$ or a^{-1} . Hence $\operatorname{Aut} G = \{1_G, \phi : a \to a^{-1}\} \simeq \mathbb{Z}/2\mathbb{Z}$.

(ii) Let $G = \langle a | a^6 = 1 \rangle$. The generators of G are a and a^5 by exercise 4, §1.5. hence Aut $G = \{1_G, \phi : a \to a^5\} \simeq \mathbb{Z}/2\mathbb{Z}$.

(iii) Let $G = \langle a \rangle$ by any finite cyclic group with |G| = n. Then all generators of G are a^k , (k, n) = 1. Then Aut G is the set of all homomorphisms defined by $\phi : a \to a^k$, (k, n) = 1.

Remark. In the case of (iii), Aut G is isomorphic to the group of units of the multiplicative monoid $(\mathbb{Z}/n\mathbb{Z}, \cdot)$. Its structure will be determined in Chap. 4, §11. (Thm. 4.19, 4.20).

4. Determine Aut S_3 .

Sol. We shall show that $\operatorname{Aut} S_3 \simeq S_3$.

Step 1. The elements of S_3 are 1, a = (123), $a^2 = (132)$, b = (12), ab = (13), $(a^2b = (23)$. Then we have the relation $ba = a^2b$. Using this relation, the reader can verify that

$$(a^m b^n)(a^p b^q) = a^{m+(n+1)p} b^{n+q}, \ m, p = 0, 1, 2; \ n, q = 0, 1$$
(*)

easily. Since an automorphism preserves the order of an element, hence, for $\phi \in \operatorname{Aut} G$, $\phi(a) = a^i$ and $\phi(b) = a^j b$ for some i = 1, 2, j = 0, 1, 2.

Step 2. Define the map $\phi_{ij}: G \to G$ by $\phi_{ij}: \begin{cases} a \to a^i \\ b \to a^j b \end{cases}$, i = 1, 2, j = 0, 1, 2. Then $\phi_{ij} \in \operatorname{Aut} G$:

We have $\phi_{ij}(a^m) = a^{im}$, $\phi_{ij}(a^m b) = a^{im+j}b$ by the definition of ϕ_{ij} . Using these, it is easy to see that ϕ_{ij} is bijective. Then we check that ϕ_{ij} is a homomorphism in the following four cases:

(i) $x = a^m b$, $y = a^n b$. Then $\phi((a^m b)(a^n b)) = \phi(a^{m+2n})$ (by (*)) $= a^{i(m+2n)}$. On the other hand, $\phi(a^m b)\phi(a^n b) = a^{im+j}ba^{in+j}b = a^{im+j+2(in+j)} = a^{im+2in+3j} = a^{i(m+2n)}$. The other three cases: (ii) $x = a^m b$, $y = a^n$, (iii) $x = a^m$, $y = a^n b$, and (iv) $x = a^m$, $y = a^n$ are left to the reader.

Step 3. It is easy to see that $\phi_{10} = 1$, ϕ_{11} and ϕ_{12} have order 3. ϕ_{20} , ϕ_{21} and ϕ_{22} have order 2. We define the mapping $\Phi : S_3 \to \operatorname{Aut} S_3$ by $a^i \mapsto \phi_{1i}$, $a^i b \mapsto \phi_{2i}$. The reader can verify that it is an isomorphism.

Remark. (1) Since $S_3 = \langle a, b | a^3 = b^2 = 1, ba = a^2b \rangle$ (See §1.11), to prove that ϕ_{ij} is a homomorphism, it is enough to check that $(\phi_{ij}(a))^3 = (\phi_{ij}(b))^2 = 1, \phi_{ij}(b)\phi_{ij}(a) = (\phi_{ij}(a))^2(\phi_{ij}(b)).$

(2) In fact, Aut $S_n \simeq S_n$ for all $n \neq 6$, and Aut $S_6/S_6 \simeq \mathbb{Z}/2\mathbb{Z}$, (c.f. I. J. Rotman: The theory of groups, p.132, or B. Huppert Endlich Gruppen I, p.173–177).

(3) For other remark, see the remark after exercise 5.

5. Let $a \in G$, a group, and define the inner automorphism (or conjugation) I_a to be the map $x \to axa^{-1}$ in G. Verify that I_a is an automorphism. Show that $a \to I_a$ is a homomorphism of G into Aut G with kernel the center C of G. Hence conclude that $\operatorname{Inn} G \equiv \{I_a | a \in G\}$ is a subgroup of Aut G with $\operatorname{Inn} G \simeq G/C$. Verify that $\operatorname{Inn} G$ is a normal subgroup of Aut G. Aut $G/\operatorname{Inn} G$ is called the group of outer automorphisms.

Proof. The last statement follows from $\phi I_a \phi^{-1}(b) = I_{\phi(a)}(b)$. We leave all the verifications to the reader.

Remark. A group G is complete in case C(G') = 1 and Aut $G \simeq G$. Exercise 2 in §1.4 and the remark in the above exercise show that S_n is complete for $n \neq 2, 6$.

It can be shown that if G is simple of composite order, then Aut(G) is complete.

6. Let G be a group, G_L the set of left translations a_L , $a \in G$. Show that G_L Aut G is a group of transformations of the set G and that this contains G_R . G_L Aut G is called the holomorph of G and is denoted as HolG. Show that if G is finite, then $|\operatorname{Hol} G| = |G||\operatorname{Aut} G|$.

Proof. (1) If $g_L \in G_L$, $\phi \in \operatorname{Aut} G$, then $\phi g_L \phi^{-1} = \phi(g)_L$. From this fact, we can prove that G_L Aut G is a group.

(2) Since $g_L^{-1}g_R(x) = g^{-1}xg = I_{g^{-1}} \in \operatorname{Aut} G$, hence $g_R = g_L I_{g^{-1}}$. And $G_R \subset G_L \operatorname{Aut} G$.

(3) To prove $|\operatorname{Hol} G| = |G||\operatorname{Aut} G|$, it suffices to show that $G_L \cap \operatorname{Aut} G = \{1\}$. Since $g_L(1) = g \neq \phi(1)$ for $\phi \in \operatorname{Aut} G, g \neq 1$, the result follows.

7. Let G be a group such that Aut G = 1. Show that G is abelian and that every element of G satisfies the equation $x^2 = 1$. Show that if G is finite then |G| = 1 or 2.

Proof. (1) let G be a group with Aut G = 1. Then $G/C \simeq \text{Inn } G = 1$ where C is the center of G (by exercise 5). Hence G is abelian. If G is abelian, $a \to a^{-1}$ is an automorphism (by exercise 2). The assumption Aut G = 1 implies that $a = a^{-1}$ for all a, that is, $a^2 = 1$.

(2) Suppose |G| is finite and $G \neq 1$.

Step 1. We prove that G contains elements a_1, \ldots, a_r such that every element of G can be written in a unique way in the form $a - 1^{k_1} \cdots a_r^{k_r}$, $k_i = 0, 1$:

For this purpose, we show that, for all *i*, there exists a normal subgroup $H = \langle a_1, \ldots, a_i \rangle$ of *G* such that every element of *H* can be written as $a_1^{k_1} \cdots a_r^{k_r}$, $k_i = 0, 1$, uniquely. We prove this statement by induction on *i*. Note that any subgroup of *G* is normal since *G* is abelian.

Take any $1 \neq a_1 \in G$, then $\langle a_1 \rangle$ is normal in G. Suppose we have $H = \langle a_1 \rangle \times \cdots \times \langle a_i \rangle$. Take any $a_{i+1} \in G - H$. Then $H \cap \langle a_{i+1} \rangle = 1$ since $|\langle a_{i+1} \rangle| = 2$. Because G is abelian any element of $\langle H, a_{i+1} \rangle$ can be written in the form hb with $h \in H$, $b \in \langle a_{i+1} \rangle$. Moreover, the expression is unique: If $h_1b_1 = h_2b_2$, then $h_2^{-1}h_1 = b_2b_1^{-1} \in H \cap \langle a_{i+1} \rangle = 1$ and $h_1 = h_2$, $b_1 = b_2$. Hence the statement.

Step 2. Suppose $n \geq 2$. Define the mapping $\alpha : G \to G$ by $a_1^{k_1} a_2^{k_2} \cdots a_n^{k_n} = a_1^{k_2} a_2^{k_1} a_3^{k_3} \cdots a_n^{k_n}$. Obviously, α is a nontrivial automorphism. This contradicts to the hypothesis Aut G = 1. Thus n = 1 and |G| = 2.

Remarks. (1) We reprove Step 2 in the language of vector space. In Step 1, we have shown that G is abelian and $x^2 = 1$ for all x. Regard G as an additive group, then G is a vector space over finite field $\mathbb{Z}/2\mathbb{Z}$ (§4.13) and an automorphism is just a nonsingular linear transformation. Let $\{a_1, \ldots, a_n\}$ be a basis of G. Suppose dim $G \ge 2$, then G has a nontrivial nonsingular linear transformation $a_1 \mapsto a_2$, $a_2 \mapsto a_1$, and $a_i \to a_i$, i > 2. A contradiction.

(2) When G is an infinite abelian group with $x^2 = 1$ for all x, we can still regard G as a vector space over $\mathbb{Z}/2\mathbb{Z}$. In this case, using Zorn's lemma, we can find a base for G. Hence it is not difficult to construct a nontrivial nonsingular linear transformation on G.

8. Let α be the automorphism of a group G which fixes only the unit of $G(\alpha(a) = a \Rightarrow a = 1)$. Show that $a \to \alpha(a)a^{-1}$ is injective. Hence show that if G is finite, then every element of G has the form $\alpha(a)a^{-1}$.

Proof. Let α be a fixed point free automorphism $(\alpha(a) = a \Rightarrow a = 1)$. Suppose $\alpha(a)a^{-1} = \alpha(b)b^{-1}$. Then $\alpha(b^{-1}a) = b^{-1}a$. Hence $b^{-1}a$ is fixed by α and $b^{-1}a = 1$. Thus $a \to \alpha(a)a^{-1}$ is injective.

If $|G| < \infty$, by the pigeon hole principle, the mapping is surjective.

9. Let G and α be as in 8, G finite, and assume $\alpha^2 = 1$. Show that G is abelian of odd order.

Proof. (1) For any element g of G, g has the form $\alpha(a)a^{-1}$. $\alpha(g) = \alpha(\alpha(a)a^{-1}) = \alpha^2(a)\alpha(a^{-1}) = a\alpha(a)^{-1} = g^{-1}$. Thus G is abelian by exercise 2.

(2) Next we show that |G| is odd. Suppose to the contrary, there is $a \in G$ with order 2 (exercise 13, §1.2). Then $\alpha(a) = a^{-1} = a$, contradicts to the hypothesis about α .

Remark. An automorphism α of G is said to be fixed point free if it leaves only the unit fixed. This exercise shows that: if G admits a fixed point free automorphism of order 2, then G is abelian. Some further results are:

Suppose that G admits a fixed point free automorphism α of order n. (1) If n = 3, then G is nilpotent (for the definition, see Basic Algebra, I, p.243, exercise 6) and x commutes with $\alpha(x)$ for all x. (2) If n is a prime, then G is nilpotent (John G. Thompson). (3) G is solvable in general (for the definition, see Basic Algebra, I, p.237). For more details, we refer to D. Gorenstein: Finite groups, chap. 10, pp.333–357 and D. Gorenstein. Finite simple groups.

10. Let G be a finite group, α an automorphism of G, and set

$$I = \{ g \in G | \alpha(g) = g^{-1} \}.$$

Suppose $|I| > \frac{3}{4}|G|$. Show that G is abelian. If $|I| = \frac{3}{4}|G|$, show that G has an abelian subgroup of index 2.

Proof. (1) Let $I = \{g \in G | \alpha(g) = g^{-1}\}$ and $|I| > \frac{3}{4}|G|$. For any $h \in I$, claim: $I \cap h^{-1}I \subset C(h)$. In fact, if $x \in I \cap h^{-1}I$, then $x - h^{-1}g$ with $g, x \in I$. Now $\alpha(h^{-1}g) = (h^{-1}g)^{-1} = g^{-1}h$; on the other hand $\alpha(h^{-1}g) = \alpha(h)^{-1}\alpha(g) = hg^{-1}$. Thus $g^{-1} \in C(h)$. It follows that $g \in C(h)$ and $x = h^{-1}g \in C(h)$ also.

Since $|I| = |h^{-1}I| > \frac{3}{4}|G|$, so $|I \cap h^{-1}I| > \frac{1}{2}|G|$. Thus C(h) is a subgroup of order $> \frac{1}{2}|G|$. Then C(h) = G and $h \in C(G)$, the center of G. Because this holds for any $h \in I$, so $|C(G)| \ge \frac{3}{4}|G|$ and G = C(G), G is a abelian.

(2) Suppose $|I| = \frac{3}{4}|G|$. Then G can not be abelian, otherwise, I is a subgroup of G. Hence there exists $h \in I - C(G)$. Let $K = I \cap h^{-1}I$, then K = C(h) and $|K| = \frac{1}{2}|G|$, by the proof of (1). Since [G:K] = 2, K is normal. The only property remains to prove is that K is abelian.

For any $k = h^{-1}g \in K = C(h)$, then $g \in C(h)$. Thus for $k_1 = h^{-1}g_1$, $k_2 = h^{-1}g_2 \in K$, $g_1g_2 \in C(h) \subset I$. Then $(g_1g_2)^{-1} = \phi(g_1g_2) = \phi(g_1)\phi(g_2) = g_1^{-1}g_2^{-1}$ and g_1 commutes with g_2 . So k_1 commutes with k_2 .

Remark. The reader is urged to find a finite non-abelian group G and its automorphism α such that $|I| = \frac{3}{4}|G|$. In fact let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group and α the inner automorphism determined by i. Then $|\{g \in G : \alpha(g) = g^{-1}\}| = 6$.