
Basic Algebra (Solutions)

by Huah Chu

Exercises (§1.9, p.62)

1. Let G = (Q, +, O), K = Z. Show that G/K ' the group of complex numbers of
the form e2πiθ, θ ∈ Q, under multiplication.

Proof. Define a homomorphism φ : G → {e2πiθ|θ ∈ Q} by θ → e2πiθ. Then ker φ = K
and φ is surjective. ¤

2. Show that a → a−1 is an automorphism of a group G if and only if G is abelian,
and if G is abelian, then a → ak is an endomorphism for every kZ.

Proof. (1) φ : a → a−1 is an automorphism
⇔ For all a, b ∈ G, (ab)−1 = φ(ab) = φ(a)φ(b) = a−1b−1.
⇔ For all a, b ∈ G, ab = ba, that is, G is abelian.

(2) G is abelian. ¿From (ab)k = akbk, we have a → ak is an endomorphism. ¤

3. Determine Aut G for (i) G an infinite cyclic group, (ii) a cyclic group of order six,
(iii) for any finite cyclic group.

Sol. (i) Let G = 〈a〉 be an infinite cyclic group. The generators of G are a and a−1.
Hence, for φ ∈ Aut G, φ(a) = a or a−1. Hence Aut G = {1G, φ : a → a−1} ' Z/2Z.

(ii) Let G = 〈a|a6 = 1〉. The generators of G are a and a5 by exercise 4, §1.5. hence
Aut G = {1G, φ : a → a5} ' Z/2Z.

(iii) Let G = 〈a〉 by any finite cyclic group with |G| = n. Then all generators of G
are ak, (k, n) = 1. Then Aut G is the set of all homomorphisms defined by φ : a → ak,
(k, n) = 1.

Remark. In the case of (iii), Aut G is isomorphic to the group of units of the multi-
plicative monoid (Z/nZ, ·). Its structure will be determined in Chap. 4, §11. (Thm.
4.19, 4.20).

4. Determine Aut S3.

Sol. We shall show that Aut S3 ' S3.
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Step 1. The elements of S3 are 1, a = (123), a2 = (132), b = (12), ab = (13),
(a2b = (23). Then we have the relation ba = a2b. Using this relation, the reader can
verify that

(ambn)(apbq) = am+(n+1)pbn+q, m, p = 0, 1, 2; n, q = 0, 1 (∗)
easily. Since an automorphism preserves the order of an element, hence, for φ ∈ Aut G,
φ(a) = ai and φ(b) = ajb for some i = 1, 2, j = 0, 1, 2.

Step 2. Define the map φij : G → G by φij :

{
a → ai

b → ajb
, i = 1, 2, j = 0, 1, 2. Then

φij ∈ Aut G:
We have φij(a

m) = aim, φij(a
mb) = aim+jb by the definition of φij. Using these, it

is easy to see that φij is bijective. Then we check that φij is a homomorphism in the
following four cases:

(i) x = amb, y = anb. Then φ((amb)(anb)) = φ(am+2n) (by (∗)) = ai(m+2n). On the
other hand, φ(amb)φ(anb) = aim+jbain+jb = aim+j+2(in+j) = aim+2in+3j = ai(m+2n). The
other three cases: (ii) x = amb, y = an, (iii) x = am, y = anb, and (iv) x = am, y = an

are left to the reader.
Step 3. It is easy to see that φ10 = 1, φ11 and φ12 have order 3. φ20, φ21 and φ22

have order 2. We define the mapping Φ : S3 → Aut S3 by ai 7→ φ1i, aib 7→ φ2i. The
reader can verify that it is an isomorphism.

Remark. (1) Since S3 = 〈a, b|a3 = b2 = 1, ba = a2b〉 (See §1.11), to prove that φij is
a homomorphism, it is enough to check that (φij(a))3 = (φij(b))

2 = 1, φij(b)φij(a) =
(φij(a))2(φij(b)).

(2) In fact, Aut Sn ' Sn for all n 6= 6, and Aut S6/S6 ' Z/2Z, (c.f. I. J. Rotman:
The theory of groups, p.132, or B. Huppert Endlich Gruppen I, p.173–177).

(3) For other remark, see the remark after exercise 5.

5. Let a ∈ G, a group, and define the inner automorphism (or conjugation) Ia to be
the map x → axa−1 in G. Verify that Ia is an automorphism. Show that a → Ia is a
homomorphism of G into Aut G with kernel the center C of G. Hence conclude that
Inn G ≡ {Ia|a ∈ G} is a subgroup of Aut G with Inn G ' G/C. Verify that Inn G is a
normal subgroup of Aut G. Aut G/ Inn G is called the group of outer automorphisms.

Proof. The last statement follows from φIaφ
−1(b) = Iφ(a)(b). We leave all the verifica-

tions to the reader. ¤

Remark. A group G is complete in case C(G′) = 1 and Aut G ' G. Exercise 2 in
§1.4 and the remark in the above exercise show that Sn is complete for n 6= 2, 6.
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It can be shown that if G is simple of composite order, then Aut(G) is complete.

6. Let G be a group, GL the set of left translations aL, a ∈ G. Show that GL Aut G
is a group of transformations of the set G and that this contains GR. GL Aut G is
called the holomorph of G and is denoted as Hol G. Show that if G is finite, then
|Hol G| = |G||Aut G|.
Proof. (1) If gL ∈ GL, φ ∈ Aut G, then φgLφ−1 = φ(g)L. ¿From this fact, we can prove
that GL Aut G is a group.

(2) Since g−1
L gR(x) = g−1xg = Ig−1 ∈ Aut G, hence gR = gLIg−1 . And GR ⊂

GL Aut G.
(3) To prove |Hol G| = |G||Aut G|, it suffices to show that GL∩Aut G = {1}. Since

gL(1) = g 6= φ(1) for φ ∈ Aut G, g 6= 1, the result follows. ¤

7. Let G be a group such that Aut G = 1. Show that G is abelian and that every
element of G satisfies the equation x2 = 1. Show that if G is finite then |G| = 1 or 2.

Proof. (1) let G be a group with Aut G = 1. Then G/C ' Inn G = 1 where C is
the center of G (by exercise 5). Hence G is abelian. If G is abelian, a → a−1 is an
automorphism (by exercise 2). The assumption Aut G = 1 implies that a = a−1 for all
a, that is, a2 = 1.

(2) Suppose |G| is finite and G 6= 1.
Step 1. We prove that G contains elements a1, . . . , ar such that every element of G

can be written in a unique way in the form a− 1k1 · · · akr
r , ki = 0, 1:

For this purpose, we show that, for all i, there exists a normal subgroup H =
〈a1, . . . , ai〉 of G such that every element of H can be written as ak1

1 · · · akr
r , ki = 0, 1,

uniquely. We prove this statement by induction on i. Note that any subgroup of G is
normal since G is abelian.

Take any 1 6= a1 ∈ G, then 〈a1〉 is normal in G. Suppose we have H = 〈a1〉 × · · · ×
〈ai〉. Take any ai+1 ∈ G − H. Then H ∩ 〈ai+1〉 = 1 since |〈ai+1〉| = 2. Because G is
abelian any element of 〈H, ai+1〉 can be written in the form hb with h ∈ H, b ∈ 〈ai+1〉.
Moreover, the expression is unique: If h1b1 = h2b2, then h−1

2 h1 = b2b
−1
1 ∈ H∩〈ai+1〉 = 1

and h1 = h2, b1 = b2. Hence the statement.
Step 2. Suppose n ≥ 2. Define the mapping α : G → G by ak1

1 ak2
2 · · · akn

n =
ak2

1 ak1
2 ak3

3 · · · akn
n . Obviously, α is a nontrivial automorphism. This contradicts to the

hypothesis Aut G = 1. Thus n = 1 and |G| = 2.

Remarks. (1) We reprove Step 2 in the language of vector space. In Step 1, we have
shown that G is abelian and x2 = 1 for all x. Regard G as an additive group, then G is
a vector space over finite field Z/2Z (§4.13) and an automorphism is just a nonsingular
linear transformation. Let {a1, . . . , an} be a basis of G. Suppose dim G ≥ 2, then G
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has a nontrivial nonsingular linear transformation a1 7→ a2, a2 7→ a1, and ai → ai,
i > 2. A contradiction.

(2) When G is an infinite abelian group with x2 = 1 for all x, we can still regard G
as a vector space over Z/2Z. In this case, using Zorn’s lemma, we can find a base for
G. Hence it is not difficult to construct a nontrivial nonsingular linear transformation
on G.

8. Let α be the automorphism of a group G which fixes only the unit of G(α(a) = a ⇒
a = 1). Show that a → α(a)a−1 is injective. Hence show that if G is finite, then every
element of G has the form α(a)a−1.

Proof. Let α be a fixed point free automorphism (α(a) = a ⇒ a = 1). Suppose
α(a)a−1 = α(b)b−1. Then α(b−1a) = b−1a. Hence b−1a is fixed by α and b−1a = 1.
Thus a → α(a)a−1 is injective.

If |G| < ∞, by the pigeon hole principle, the mapping is surjective. ¤

9. Let G and α be as in 8, G finite, and assume α2 = 1. Show that G is abelian of odd
order.

Proof. (1) For any element g of G, g has the form α(a)a−1. α(g) = α(α(a)a−1) =
α2(a)α(a−1) = aα(a)−1 = g−1. Thus G is abelian by exercise 2.

(2) Next we show that |G| is odd. Suppose to the contrary, there is a ∈ G with
order 2 (exercise 13, §1.2). Then α(a) = a−1 = a, contradicts to the hypothesis about
α. ¤

Remark. An automorphism α of G is said to be fixed point free if it leaves only the
unit fixed. This exercise shows that: if G admits a fixed point free automorphism of
order 2, then G is abelian. Some further results are:

Suppose that G admits a fixed point free automorphism α of order n. (1) If n = 3,
then G is nilpotent (for the definition, see Basic Algebra, I, p.243, exercise 6) and
x commutes with α(x) for all x. (2) If n is a prime, then G is nilpotent (John G.
Thompson). (3) G is solvable in general (for the definition, see Basic Algebra, I, p.237).
For more details, we refer to D. Gorenstein: Finite groups, chap. 10, pp.333–357 and
D. Gorenstein. Finite simple groups.

10. Let G be a finite group, α an automorphism of G, and set

I = {g ∈ G|α(g) = g−1}.
Suppose |I| > 3

4
|G|. Show that G is abelian. If |I| = 3

4
|G|, show that G has an abelian

subgroup of index 2.
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Proof. (1) Let I = {g ∈ G|α(g) = g−1} and |I| > 3
4
|G|. For any h ∈ I, claim:

I ∩ h−1I ⊂ C(h). In fact, if x ∈ I ∩ h−1I, then x − h−1g with g, x ∈ I. Now
α(h−1g) = (h−1g)−1 = g−1h; on the other hand α(h−1g) = α(h)−1α(g) = hg−1. Thus
g−1 ∈ C(h). It follows that g ∈ C(h) and x = h−1g ∈ C(h) also.

Since |I| = |h−1I| > 3
4
|G|, so |I ∩ h−1I| > 1

2
|G|. Thus C(h) is a subgroup of order

> 1
2
|G|. Then C(h) = G and h ∈ C(G), the center of G. Because this holds for any

h ∈ I, so |C(G)| ≥ 3
4
|G| and G = C(G), G is a abelian.

(2) Suppose |I| = 3
4
|G|. Then G can not be abelian, otherwise, I is a subgroup of G.

Hence there exists h ∈ I − C(G). Let K = I ∩ h−1I, then K = C(h) and |K| = 1
2
|G|,

by the proof of (1). Since [G : K] = 2, K is normal. The only property remains to
prove is that K is abelian.

For any k = h−1g ∈ K = C(h), then g ∈ C(h). Thus for k1 = h−1g1, k2 = h−1g2 ∈
K, g1g2 ∈ C(h) ⊂ I. Then (g1g2)

−1 = φ(g1g2) = φ(g1)φ(g2) = g−1
1 g−1

2 and g1 commutes
with g2. So k1 commutes with k2. ¤

Remark. The reader is urged to find a finite non-abelian group G and its automor-
phism α such that |I| = 3

4
|G|. In fact let G = {±1,±i,±j,±k} be the quaternion group

and α the inner automorphism determined by i. Then |{g ∈ G : α(g) = g−1}| = 6.
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