Basic Algebra (Solutions)

by Huah Chu

Exercises (§1.9, p.62)

1. Let $G=(\mathbb{Q},+, O), K=\mathbb{Z}$. Show that $G / K \simeq$ the group of complex numbers of the form $e^{2 \pi i \theta}, \theta \in \mathbb{Q}$, under multiplication.

Proof. Define a homomorphism $\phi: G \rightarrow\left\{e^{2 \pi i \theta} \mid \theta \in \mathbb{Q}\right\}$ by $\theta \rightarrow e^{2 \pi i \theta}$. Then ker $\phi=K$ and ϕ is surjective.
2. Show that $a \rightarrow a^{-1}$ is an automorphism of a group G if and only if G is abelian, and if G is abelian, then $a \rightarrow a^{k}$ is an endomorphism for every $k \mathbb{Z}$.
Proof. (1) $\quad \phi: a \rightarrow a^{-1}$ is an automorphism
\Leftrightarrow For all $a, b \in G,(a b)^{-1}=\phi(a b)=\phi(a) \phi(b)=a^{-1} b^{-1}$.
\Leftrightarrow For all $a, b \in G, a b=b a$, that is, G is abelian.
(2) G is abelian. ¿From $(a b)^{k}=a^{k} b^{k}$, we have $a \rightarrow a^{k}$ is an endomorphism.
3. Determine Aut G for (i) G an infinite cyclic group, (ii) a cyclic group of order six, (iii) for any finite cyclic group.

Sol. (i) Let $G=\langle a\rangle$ be an infinite cyclic group. The generators of G are a and a^{-1}. Hence, for $\phi \in \operatorname{Aut} G, \phi(a)=a$ or a^{-1}. Hence Aut $G=\left\{1_{G}, \phi: a \rightarrow a^{-1}\right\} \simeq \mathbb{Z} / 2 \mathbb{Z}$.
(ii) Let $G=\left\langle a \mid a^{6}=1\right\rangle$. The generators of G are a and a^{5} by exercise 4, §1.5. hence Aut $G=\left\{1_{G}, \phi: a \rightarrow a^{5}\right\} \simeq \mathbb{Z} / 2 \mathbb{Z}$.
(iii) Let $G=\langle a\rangle$ by any finite cyclic group with $|G|=n$. Then all generators of G are $a^{k},(k, n)=1$. Then Aut G is the set of all homomorphisms defined by $\phi: a \rightarrow a^{k}$, $(k, n)=1$.

Remark. In the case of (iii), Aut G is isomorphic to the group of units of the multiplicative monoid ($\mathbb{Z} / n \mathbb{Z}, \cdot)$. Its structure will be determined in Chap. 4, §11. (Thm. 4.19, 4.20).
4. Determine Aut S_{3}.

Sol. We shall show that Aut $S_{3} \simeq S_{3}$.

Step 1. The elements of S_{3} are 1, $a=(123), a^{2}=(132), b=(12), a b=(13)$, $\left(a^{2} b=(23)\right.$. Then we have the relation $b a=a^{2} b$. Using this relation, the reader can verify that

$$
\begin{equation*}
\left(a^{m} b^{n}\right)\left(a^{p} b^{q}\right)=a^{m+(n+1) p} b^{n+q}, m, p=0,1,2 ; n, q=0,1 \tag{*}
\end{equation*}
$$

easily. Since an automorphism preserves the order of an element, hence, for $\phi \in$ Aut G, $\phi(a)=a^{i}$ and $\phi(b)=a^{j} b$ for some $i=1,2, j=0,1,2$.

Step 2. Define the map $\phi_{i j}: G \rightarrow G$ by $\phi_{i j}:\left\{\begin{array}{l}a \rightarrow a^{i} \\ b \rightarrow a^{j} b\end{array}, i=1,2, j=0,1,2\right.$. Then $\phi_{i j} \in \operatorname{Aut} G$:

We have $\phi_{i j}\left(a^{m}\right)=a^{i m}, \phi_{i j}\left(a^{m} b\right)=a^{i m+j} b$ by the definition of $\phi_{i j}$. Using these, it is easy to see that $\phi_{i j}$ is bijective. Then we check that $\phi_{i j}$ is a homomorphism in the following four cases:
(i) $x=a^{m} b, y=a^{n} b$. Then $\phi\left(\left(a^{m} b\right)\left(a^{n} b\right)\right)=\phi\left(a^{m+2 n}\right)($ by $(*))=a^{i(m+2 n)}$. On the other hand, $\phi\left(a^{m} b\right) \phi\left(a^{n} b\right)=a^{i m+j} b a^{i n+j} b=a^{i m+j+2(i n+j)}=a^{i m+2 i n+3 j}=a^{i(m+2 n)}$. The other three cases: (ii) $x=a^{m} b, y=a^{n}$, (iii) $x=a^{m}, y=a^{n} b$, and (iv) $x=a^{m}, y=a^{n}$ are left to the reader.

Step 3. It is easy to see that $\phi_{10}=1, \phi_{11}$ and ϕ_{12} have order 3. ϕ_{20}, ϕ_{21} and ϕ_{22} have order 2. We define the mapping $\Phi: S_{3} \rightarrow$ Aut S_{3} by $a^{i} \mapsto \phi_{1 i}, a^{i} b \mapsto \phi_{2 i}$. The reader can verify that it is an isomorphism.

Remark. (1) Since $S_{3}=\left\langle a, b \mid a^{3}=b^{2}=1, b a=a^{2} b\right\rangle$ (See $\S 1.11$), to prove that $\phi_{i j}$ is a homomorphism, it is enough to check that $\left(\phi_{i j}(a)\right)^{3}=\left(\phi_{i j}(b)\right)^{2}=1, \phi_{i j}(b) \phi_{i j}(a)=$ $\left(\phi_{i j}(a)\right)^{2}\left(\phi_{i j}(b)\right)$.
(2) In fact, Aut $S_{n} \simeq S_{n}$ for all $n \neq 6$, and Aut $S_{6} / S_{6} \simeq \mathbb{Z} / 2 \mathbb{Z}$, (c.f. I. J. Rotman: The theory of groups, p.132, or B. Huppert Endlich Gruppen I, p.173-177).
(3) For other remark, see the remark after exercise 5.
5. Let $a \in G$, a group, and define the inner automorphism (or conjugation) I_{a} to be the map $x \rightarrow a x a^{-1}$ in G. Verify that I_{a} is an automorphism. Show that $a \rightarrow I_{a}$ is a homomorphism of G into Aut G with kernel the center C of G. Hence conclude that $\operatorname{Inn} G \equiv\left\{I_{a} \mid a \in G\right\}$ is a subgroup of Aut G with $\operatorname{Inn} G \simeq G / C$. Verify that $\operatorname{Inn} G$ is a normal subgroup of Aut G. Aut $G / \operatorname{Inn} G$ is called the group of outer automorphisms.
Proof. The last statement follows from $\phi I_{a} \phi^{-1}(b)=I_{\phi(a)}(b)$. We leave all the verifications to the reader.

Remark. A group G is complete in case $C\left(G^{\prime}\right)=1$ and Aut $G \simeq G$. Exercise 2 in $\S 1.4$ and the remark in the above exercise show that S_{n} is complete for $n \neq 2,6$.

It can be shown that if G is simple of composite order, then $\operatorname{Aut}(G)$ is complete.
6. Let G be a group, G_{L} the set of left translations $a_{L}, a \in G$. Show that G_{L} Aut G is a group of transformations of the set G and that this contains G_{R}. G_{L} Aut G is called the holomorph of G and is denoted as Hol G. Show that if G is finite, then $|\operatorname{Hol} G|=|G| \mid$ Aut $G \mid$.
Proof. (1) If $g_{L} \in G_{L}, \phi \in \operatorname{Aut} G$, then $\phi g_{L} \phi^{-1}=\phi(g)_{L}$. ¿From this fact, we can prove that G_{L} Aut G is a group.
(2) Since $g_{L}^{-1} g_{R}(x)=g^{-1} x g=I_{g^{-1}} \in$ Aut G, hence $g_{R}=g_{L} I_{g^{-1}}$. And $G_{R} \subset$ G_{L} Aut G.
(3) To prove $|\operatorname{Hol} G|=|G| \mid$ Aut $G \mid$, it suffices to show that $G_{L} \cap$ Aut $G=\{1\}$. Since $g_{L}(1)=g \neq \phi(1)$ for $\phi \in \operatorname{Aut} G, g \neq 1$, the result follows.
7. Let G be a group such that $\operatorname{Aut} G=1$. Show that G is abelian and that every element of G satisfies the equation $x^{2}=1$. Show that if G is finite then $|G|=1$ or 2 .
Proof. (1) let G be a group with Aut $G=1$. Then $G / C \simeq \operatorname{Inn} G=1$ where C is the center of G (by exercise 5). Hence G is abelian. If G is abelian, $a \rightarrow a^{-1}$ is an automorphism (by exercise 2). The assumption Aut $G=1$ implies that $a=a^{-1}$ for all a, that is, $a^{2}=1$.
(2) Suppose $|G|$ is finite and $G \neq 1$.

Step 1. We prove that G contains elements a_{1}, \ldots, a_{r} such that every element of G can be written in a unique way in the form $a-1^{k_{1}} \cdots a_{r}^{k_{r}}, k_{i}=0,1$:

For this purpose, we show that, for all i, there exists a normal subgroup $H=$ $\left\langle a_{1}, \ldots, a_{i}\right\rangle$ of G such that every element of H can be written as $a_{1}^{k_{1}} \cdots a_{r}^{k_{r}}, k_{i}=0,1$, uniquely. We prove this statement by induction on i. Note that any subgroup of G is normal since G is abelian.

Take any $1 \neq a_{1} \in G$, then $\left\langle a_{1}\right\rangle$ is normal in G. Suppose we have $H=\left\langle a_{1}\right\rangle \times \cdots \times$ $\left\langle a_{i}\right\rangle$. Take any $a_{i+1} \in G-H$. Then $H \cap\left\langle a_{i+1}\right\rangle=1$ since $\left|\left\langle a_{i+1}\right\rangle\right|=2$. Because G is abelian any element of $\left\langle H, a_{i+1}\right\rangle$ can be written in the form $h b$ with $h \in H, b \in\left\langle a_{i+1}\right\rangle$. Moreover, the expression is unique: If $h_{1} b_{1}=h_{2} b_{2}$, then $h_{2}^{-1} h_{1}=b_{2} b_{1}^{-1} \in H \cap\left\langle a_{i+1}\right\rangle=1$ and $h_{1}=h_{2}, b_{1}=b_{2}$. Hence the statement.

Step 2. Suppose $n \geq 2$. Define the mapping $\alpha: G \rightarrow G$ by $a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{n}^{k_{n}}=$ $a_{1}^{k_{2}} a_{2}^{k_{1}} a_{3}^{k_{3}} \cdots a_{n}^{k_{n}}$. Obviously, α is a nontrivial automorphism. This contradicts to the hypothesis Aut $G=1$. Thus $n=1$ and $|G|=2$.

Remarks. (1) We reprove Step 2 in the language of vector space. In Step 1, we have shown that G is abelian and $x^{2}=1$ for all x. Regard G as an additive group, then G is a vector space over finite field $\mathbb{Z} / 2 \mathbb{Z}(\S 4.13)$ and an automorphism is just a nonsingular linear transformation. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a basis of G. Suppose $\operatorname{dim} G \geq 2$, then G
has a nontrivial nonsingular linear transformation $a_{1} \mapsto a_{2}, a_{2} \mapsto a_{1}$, and $a_{i} \rightarrow a_{i}$, $i>2$. A contradiction.
(2) When G is an infinite abelian group with $x^{2}=1$ for all x, we can still regard G as a vector space over $\mathbb{Z} / 2 \mathbb{Z}$. In this case, using Zorn's lemma, we can find a base for G. Hence it is not difficult to construct a nontrivial nonsingular linear transformation on G.
8. Let α be the automorphism of a group G which fixes only the unit of $G(\alpha(a)=a \Rightarrow$ $a=1$). Show that $a \rightarrow \alpha(a) a^{-1}$ is injective. Hence show that if G is finite, then every element of G has the form $\alpha(a) a^{-1}$.
Proof. Let α be a fixed point free automorphism $(\alpha(a)=a \Rightarrow a=1)$. Suppose $\alpha(a) a^{-1}=\alpha(b) b^{-1}$. Then $\alpha\left(b^{-1} a\right)=b^{-1} a$. Hence $b^{-1} a$ is fixed by α and $b^{-1} a=1$. Thus $a \rightarrow \alpha(a) a^{-1}$ is injective.

If $|G|<\infty$, by the pigeon hole principle, the mapping is surjective.
9. Let G and α be as in $8, G$ finite, and assume $\alpha^{2}=1$. Show that G is abelian of odd order.

Proof. (1) For any element g of G, g has the form $\alpha(a) a^{-1} . \alpha(g)=\alpha\left(\alpha(a) a^{-1}\right)=$ $\alpha^{2}(a) \alpha\left(a^{-1}\right)=a \alpha(a)^{-1}=g^{-1}$. Thus G is abelian by exercise 2 .
(2) Next we show that $|G|$ is odd. Suppose to the contrary, there is $a \in G$ with order 2 (exercise $13, \S 1.2$). Then $\alpha(a)=a^{-1}=a$, contradicts to the hypothesis about α.

Remark. An automorphism α of G is said to be fixed point free if it leaves only the unit fixed. This exercise shows that: if G admits a fixed point free automorphism of order 2 , then G is abelian. Some further results are:

Suppose that G admits a fixed point free automorphism α of order n. (1) If $n=3$, then G is nilpotent (for the definition, see Basic Algebra, I, p.243, exercise 6) and x commutes with $\alpha(x)$ for all x. (2) If n is a prime, then G is nilpotent (John G. Thompson). (3) G is solvable in general (for the definition, see Basic Algebra, I, p.237). For more details, we refer to D. Gorenstein: Finite groups, chap. 10, pp.333-357 and D. Gorenstein. Finite simple groups.
10. Let G be a finite group, α an automorphism of G, and set

$$
I=\left\{g \in G \mid \alpha(g)=g^{-1}\right\}
$$

Suppose $|I|>\frac{3}{4}|G|$. Show that G is abelian. If $|I|=\frac{3}{4}|G|$, show that G has an abelian subgroup of index 2 .

Proof. (1) Let $I=\left\{g \in G \mid \alpha(g)=g^{-1}\right\}$ and $|I|>\frac{3}{4}|G|$. For any $h \in I$, claim: $I \cap h^{-1} I \subset C(h)$. In fact, if $x \in I \cap h^{-1} I$, then $x-h^{-1} g$ with $g, x \in I$. Now $\alpha\left(h^{-1} g\right)=\left(h^{-1} g\right)^{-1}=g^{-1} h$; on the other hand $\alpha\left(h^{-1} g\right)=\alpha(h)^{-1} \alpha(g)=h g^{-1}$. Thus $g^{-1} \in C(h)$. It follows that $g \in C(h)$ and $x=h^{-1} g \in C(h)$ also.

Since $|I|=\left|h^{-1} I\right|>\frac{3}{4}|G|$, so $\left|I \cap h^{-1} I\right|>\frac{1}{2}|G|$. Thus $C(h)$ is a subgroup of order $>\frac{1}{2}|G|$. Then $C(h)=G$ and $h \in C(G)$, the center of G. Because this holds for any $h \in I$, so $|C(G)| \geq \frac{3}{4}|G|$ and $G=C(G), G$ is a abelian.
(2) Suppose $|I|=\frac{3}{4}|G|$. Then G can not be abelian, otherwise, I is a subgroup of G. Hence there exists $h \in I-C(G)$. Let $K=I \cap h^{-1} I$, then $K=C(h)$ and $|K|=\frac{1}{2}|G|$, by the proof of (1). Since $[G: K]=2, K$ is normal. The only property remains to prove is that K is abelian.

For any $k=h^{-1} g \in K=C(h)$, then $g \in C(h)$. Thus for $k_{1}=h^{-1} g_{1}, k_{2}=h^{-1} g_{2} \in$ $K, g_{1} g_{2} \in C(h) \subset I$. Then $\left(g_{1} g_{2}\right)^{-1}=\phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=g_{1}^{-1} g_{2}^{-1}$ and g_{1} commutes with g_{2}. So k_{1} commutes with k_{2}.

Remark. The reader is urged to find a finite non-abelian group G and its automorphism α such that $|I|=\frac{3}{4}|G|$. In fact let $G=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group and α the inner automorphism determined by i. Then $\left|\left\{g \in G: \alpha(g)=g^{-1}\right\}\right|=6$.

