Basic Algebra (Solutions)

by Huah Chu

Exercises (§1.8, p.57)

1. Determine addition tables for (Z/Z3,+) and (Z/Z6,+). Determine all the sub-
groups of (7 /76, +).

Sol. The subgroups of (Z/76,+) are {0}, {0,2,4}, {0,3} and Z/Z6. Addition table
for (7.)7.6,+):

0123475
00 1 2345
1/1 23450
212 34501
3134501 2
414501 23
5/5 01 234

2. Determine a multiplication table for (Z/Z6,-).
Sol. Multiplication table for (Z/Z6,-):

012345
0/0 00 00O
110 1 2345
210 2 40 2 4
3/0 3030 3
410 4 20 4 2
5/0 543 21

3. Let G be the group of pairs of real numbers (a,b), a # 0, with the product
(a,b)(c,d) = (ac,ad +b) (exercise 4. p.36). Verify that K = {(1,b)|b € R} is a normal
subgroup of G. Show that G/K ~ (IR*,-, 1) the multiplicative group of non-zero reals.



Proof. The isomorphism from G/K to (R*,-) is K(a,b) — a. All verifications are
routine. 0

4. Show that any subgroup of index two is normal. Hence prove that A, is normal in
Sh.

Proof. Let H be a subgroup of index two. Its right cosets are {H, Hx}. If x ¢ H, its
left cosets must be {H,zH}. Hence Hx = xH for all x ¢ H, i.e. x 'Hx C H. For
x € H, v/ 'Hxz C H holds trivially. Hence H is normal. O

Remark. This exercise is a special case of the following:
Let H be a subgroup a finite group G with index p. If p is the smallest prime
dividing |G|. Then H is a normal subgroup of G. (See §1.12, exercise 5).

5. Verify that the intersection of any set of normal subgroups of a group is a normal
subgroup. Show that if H and K are normal subgroups, then H K is a normal subgroup.

Proof. The second statement follows from ¢ 'HKg = (¢7*Hg)(g ' Kg). O

6. Let G; and G5 be simple groups. Determine the normal subgroups of G; x Gj.

Proof. In this problem, we use some terminology and some results which will be
proved in sections 1.9 and 1.10. Then answer to this problem is the following: (1)
When Gy # G5 or Gy ~ Gy # Z,, the only normal subgroups of G; x Go are {1} x {1},
Gy x {1}, {1} x G, and Gy x Gy; (2) When Gy ~ Gy ~ Z,, all the subgroups of
G1 X Go are normal, and there are p 4 3 subgroups in Gy x Gy >~ Z,, X Z,.

Let N be any normal subgroup of G; x Gy with N # G x Gj.

Let m; : Gy x Gy — G, i = 1,2, be the projection onto the i-th coordinate. It is
straight-forward to verify that m;(N) < G;, i = 1,2. Hence m;(N) = {1} or G; since G;
is simple. It is easy to deduce the followings

m(N) =m(N) = {1} = N = {(1, 1)}
m(N) =1 and m(N) =Gy = N ={1} x Gy
Wl(N):Gl and WQ(N):{]_}:>N:G1X{1}

It remains to establish the following:
7Tl<N) :Gl, 7T2(N> :Gz, N%Gl X G2 = G1 EGQ ZZP.
Step 1. NN (Gy x {1}) ={(1, 1)}, Nn ({1} x Gy) = {(1,1)}.
Since N, G; x {1} are normal, it follows N N (G; x {1}) < (G; x {1}). Thus
NN(Gyx{1}) ={(1, 1)} or Gy x{1}. If NN(Gy x{1}) = Gy x {1}, then N D Gy x{1}.
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Then N/G; x {1} is a normal subgroup of Gy x G2/G; x {1} ~ G5 by Theorem 1.8.
(Page 63). Hence N = G x Gy or Gy x {1}. But N # G; x G5 by assumption. If
N = Gy x {1}, then (V) # Gs; again a contradiction.

Step 2. For any h € Gy, there is a unique k& € G; such that (h, k) € N. Similarly
for any k € G, there is a unique h € G such that (h, k) € N.

For any h € Gy, there is a k € G with (h, k) € N since m1(N) = G;. Now for the
uniqueness: if (h, k1), (h, ky) € N, then (1, kik; ") = (h, k1) - (h,k2)™t € N. By Step 1,
(1, kiksh) € NN ({1} x G2) = {(1,1)}. Hence ky = ks.

Step 3. For any h € Gy, define ¢(h) € G, such that (h,¢(h)) € N. ¢ is a well-
defined homomorphism from G; into Gy by Step 2. Moreover, ¢ is onto by Step 2.
Since (57 is simple, ¢ is one to one. Hence ¢ : G; — G5 is an isomorphism.

Step 4. We shall show that G (~ G2) is abelian.

For any h € Gy, consider (h,k) € N. For any g € Gy, (9,1)7' - (h, k) - (9,1) € N.
Hence (h,k) € N. By Step 2, h = g~'hg. Thus gh = hg for all g,h € G;.

Step 5. The only simple abelian groups are Z,, p, a prime. Choose any nonzero
element g. Since G is abelian, (g) is normal in G. Since G is simple, (g) = G. Thus G
is cyclic. But Z and Z, (n: a composite number) cannot be simple.

Step 6. Any nontrivial proper subgroup in Z, x Z,, p, a prime, is cyclic of order p;
and there are p + 1 such subgroups.

Since |Z, x 7Z,| = p?, any nontrivial subgroup is of order p. Any nonzero element

in Z, x Z, generates such a subgroup. There are % = p + 1 such subgroups.

7. Let = be an equivalence relation on a monoid M. Show that = is a congruence if
and only if the subset of M x M defining = (p.10) is a submonoid of M x M.

Proof. Let S be the subset of M x M defining =. Then (1,1) € S obviously. The
equivalence = is a congruence < a = a’ and b = V' imply ab = d'V/ < (a,b) € S and
(a',b') € S imply (ad’,bb’) € S < S is a monoid. O

8. Let {=;} be a set of congruences on M. Define the intersection as the intersection
of the corresponding subsets of M x M. Verify that this is a congruence on M.

Proof. The reader first verify that it is an equivalence by definition and then apply
exercise 7. U

9. Let G; and G4 be subgroups of a group G and let a be the map of G; x G4 into G

defined by a(gi,g2) = g1go- Show that the fiber over g;go — that is, a7 !(g192) — is

the set of pairs (g1k, k~1go) where k € K = G; N Go. Hence show that all fibers have

the same cardinality, namely, that of K. Use this to show that if G; and G5 are finite

e GillG
111G2

|G1G,| GO Gl
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Proof. (1) Let (hy, he) € a7 (g1g2), i.e. hihy = g1go. Then gy 'hy = gohy' € G1NGy =
K. Set k = g~ 'h,. We have hy = g1k and hy = k™ 1gs.

(2) Let a be the map: G x Go — G defined by a(g1,g2) = ¢g192. The image
O./(G1><G2) = GlGQ. Then |G1XG2| = Zg1ggeG1G2 |ofl(glgg)| = 291926016’2 |G1ﬂG2| =
|G1G5||G1 N Gy|. Hence the result. O

10. Let G be a finite group. A and B non-vacuous subsets of G. Show that G = AB
if |[A| +|B| > |G|.

Proof. Suppose |A| + |B| > |G|. For any g € G, let A™lg o {a7'g € Gla € A}. Then
|A~tg| = |A]. Since |[A™g| + |B| > |G|, A~'gn B # 0. Thus a~'g = b for some a € A
and b € B. So g = ab. O

11. Let G be a group of order 2k where k is odd. Show that G contains a subgroup of
index 2.

Proof. Suppose |G| = 2k, k is odd. The permutation group G, of left translations is a
subgroup of Sy and isomorphic to G. It suffices to show that G contains a subgroup
of index 2.

G contains an element a of order 2 by [Chapter 1, §1.2. Exercise 13, p.36] or
by Sylow’s theorem (p/78). Since ag # g for all ¢ € G, ar has no fixed point in
{1,2,...,2k}. Regarding a; as an element of Sy, its cycle decomposition must be
(12)(34) - -- (2k — 1,2k) by suitable change the notation. « is an odd permutation
because k is odd.

Set H = Ay, NG . For any odd permutation 3 € Gy, fa~t € H. Hence 8 € Ha
and G, = H U Ha. Hence G, contains the subgroup H of index 2. O



