Basic Algebra (Solutions)

by Huah Chu

Exercise $(\S1.7, p.53)$

1. Determine the cosets of $\langle \alpha \rangle$ in S - 4 where $\alpha = (1234)$.

Ans. Let $H = \langle (1234) \rangle$. The right cosets are H, $H(12) = \{ (12), (134), (1423), (243) \}$, $H(13) = \{ (13), (14)(23), (24), (12)(34) \}$, $H(14) = \{ (14), (234), (1243), (132) \}$, $H(23) = \{ (23), (241), (1342), (143) \}$, $H(24) = \{ (24), (12)(34), (13), (14)(23) \}$. The left coset of H are left for the reader.

2. Show that if G is finite and H and K are subgroups such that $H \supset K$ then [G:K] = [G:H][H:K].

Proof. (I) Since H is a subgroup of G, hence |G| = [G : H]|H|. K is a subgroup of H, |H| = |K|[H : K]. Thus |G| = [G : H][H : K]|K|, K is a subgroup of G, |G| = [G : K]|K|. Hence [G : H][H : K]|K| = [G : H]|K| and [G : H][H : K] = [G : K].

(II) Let $G = \bigcup_{i=1}^{n} Hh_i$, $H = \bigcup_{j=1}^{m} Kk_j$ where n = [G : H], m = [H : K]. Then $G = \bigcup_{\substack{1 \le i \le n \\ 1 \le j \le m}} Kk_jh_i$. It is easy to check that $Kk_jh_i \ne Kk_rh_s$ if $(j,i) \ne (r,s)$. Hence [G : H] = nm = [G : H][H : K].

3. Let H_1 and H_2 be subgroups of G. Show that any right coset relative to $H_1 \cap H_2$ is the intersection of a right coset of H_1 with a right coset of H_2 . Use this to prove Poincare's Theorem that if H_1 and H_2 have finite index in G then so has $H_1 \cap H_2$.

Proof. (1) Let $(H_1 \cap H_2)x$ be any coset of $H_1 \cap H_2$, we just need to prove that $(H_1 \cap H_2)x = H_1x \cap H_2x$:

For $y \in H_1 x \cap H_2 x$, $y = h_1 x$ for $h_1 \in H_1$. Since $h_1 x \in H_2 x$, $h_1 = (h_1 x) x^{-1} \in H_2$, so $h_1 \in H_1 \cap H_2$. $y \in (H_1 \cap H_2) x$.

(2) Let $\{H_1x_1, \ldots, H_1x_n\}$ be cosets of H_1 and $\{H_2y_1, \ldots, H_2y_m\}$ cosets of H_2 . From (1) any cosets $(H_1 \cap H_2)x$ of $H_1 \cap H_2$ is the intersection of a right coset H_1x_i of H_1 with a right coset H_2y_j of H_2 . Hence $H_1 \cap H_2$ has only a finite number $(\leq nm)$ of cosets. \Box

4. Let G be a finitely generated group, H a subgroup of finite index. Show that H is finitely generated.

Proof. Let $S = \{g_1, \ldots, g_m\}$ be a finite generating set of G. We may assume that $g_i^{-1} \in S$ for all i. Let $\{Hx_1, Hx_2, \ldots, Hx_n\}$ be the right cosets of H, where $x_1 = 1$. For any $i, j, x_i g_j = u_{ij} x_i$, for some $u_{ij} \in H$ and some coset representative $x_{i'}$. We shall show that H is generated by $\{u_{ij}\}$, hence is finitely generated.

Let $h = g_{i_1}g_{i_2}\cdots g_{i_l} \in H$, where $g_{ij} \in H$. Then

$$h = (x_1 g_{i_1}) g_{i_2} \cdots g_{i_l} = (u_{1_{i_1}} x_{1'}) g_{i_2} \cdots g_{i_l}$$

= $u_{1_{i_1}} (x_{1'} g_{i_2}) g_{i_3} \cdots g_{i_l} = u_{1_{i_1}} (u_{j'i_l} x_{2'}) g_{i_3} \cdots g_{i_l}$
= \cdots
= $u_{1_{i_1}} u_{1'i_2} \cdots u_{(l-1)'i_l} x_{s'} \in H = H x_1.$

Hence $x_{s'} = x_1 = 1$ and *H* is generated by $\{u_{ij}\}$.

Remark. If H is any subgroup of a finitely generated group G, it is not necessary that H should be finitely generated. In fact, the commutator subgroup of a free group of rank two is not finitely generated.

5. Let H and K be two subgroups of a group G. Show that the set of maps $x \to hxk$, $h \in H$, $k \in K$ is a group of transformations of the set G. Show that the orbit of x relative to this group is the set $HxK = \{hxk|h \in H, k \in K\}$. This is called the double coset of x relative to the pair (H, K). Show that if G is finite then $|HxK| = |H|[K : x^{-1}Hx \cap K]$.

Proof. We only prove the last statement. We write $M = x^{-1}Hx \cap K$ for simplicity. We shall show that the mapping $Mk \to Hxk$ establishes a one to one correspondence between the cosets of $x^{-1}Hx \cap K$ in K and the cosets of H is HxK. Thus $|HxK|/|K| = [K : x^{-1}Hx \cap K]$, hence the result.

(i) The mapping is well-defined. If Mk = Mk', then $k(k')^{-1} \in M = x^{-1}Hx \cap K$, $k(k')^{-1} \in x^{-1}Hx$, $xkk'^{-1}x^{-1} = xk(xk')^{-1} \in H$. Thus Hxk = Hxk'.

(ii) The mapping is one to one. Reversing the implications in (i) will get (ii).

(iii) The mapping is onto obviously.

Remark. Let H and K be subgroups of G. Then HxK is an orbit under the transformation group stated in the exercise. Hence G has a double coset decomposition $G = \bigcup_{x \in G} HxK$.

6. Let H be a subgroup of finite index in a group G. Show that there exists a set of elements $z_1, z_2, \ldots, z_r \in G$, r = [G : H], which are representatives of both the set of right and the set of left cosets, that is, G is the disjoint union of the Hz_i and also of the z_iH .

Proof. Let H be a subgroup of G. By the remark after exercise 5, G has a double coset decomposition $G = Hg_1H \cup Hg_2H \cup \cdots \cup Hg_lH$. To prove this exercise, it is enough to show that, for each double coset Hg_iH , there exist z_1, \ldots, z_s so that they are representatives of the left and the right cosets of H contained in the double coset Hg_iH .

Let HgH be any double coset. Write $HgH = \bigcup_{i=1}^{s} Hgx_i$ where $x_i \in H$ and $Hgx_i \cap Hgx_j = \emptyset$ if $i \neq j$. We also write $HgH = \bigcup_{i=1}^{s'} y_igH$ where $y_i \in H$ and $y_igH \cap y_igH = \emptyset$ if $i \neq j$. From exercise 5, we have s = s'. For any $x_i, y_i \in H$ we have $Hgx_i = Hy_igx_i$ and $y_igx_iH = y_igH$. Hence $\{y_igx_i\}$ are the representatives which we want.