
Basic Algebra (Solutions)

by Huah Chu

Exercises (§1.5, p.47)

1. As in section 1.4, let C(A) denote the centralizer of the subset A of a monoid M (or a
group G). Note that C(C(A)) ⊃ A and if A ⊂ B then C(A) ⊃ C(B). Show that these
imply that C(C(C(A))) = C(A). Without using the explicit form of the elements of
〈A〉 show that C(A) = C(〈A〉). (Hint: Note that if c ∈ C(A) then A ⊂ C(c) and hence
〈A〉 ⊂ C(c).) Use the last result to show that if a monoid (or a group) is generated by
a set of elements A which pairwise commute, then the monoid (group) is commutative.

Proof. (1) C(C(C(A))) = C(A):
¿From C(C(A)) ⊃ A, we have C(C(C(A))) ⊂ C(A). On the other hand, replacing

A in C(C(A)) by C(A), we have C(C(C(A))) ⊃ C(A). Hence these two sets are equal.
(2) C(A) = C(〈A〉):
For any c ∈ C(A), A ⊂ C(c). Thus 〈A〉 ⊂ C(c) since C(c) is a monoid. 〈A〉

commute with every element of C(A), hence C(A) ⊂ C(〈A〉).
(3) If a monoid M is generated by S and st = ts for all s, t ∈ S, then M is

commutative:
S ⊂ C(S) since the elements of S are commutative. Applying (2), we have

C(S) = C(〈S〉) = C(M) and hence S ⊂ C(M). Thus M = 〈S〉 ⊂ C(M) and M
is commutative. ¤

2. Let M be a monoid generated by a set S and suppose every element of S is invertible.
Show that M is a group.

Proof. Every element of M has the form s1s2 · · · sr, si ∈ S, which is invertible with
inverse s−1

r s−1
r−1 · · · s−1

1 ∈ M . Hence M is a group. ¤

3. Let G be a finitely generated abelian group which is periodic in the sense that all
of its elements have finite order. Show that G is finite.

Proof. Suppose G is an abelian group generated by {g1, . . . , gn} and o(gi) = `i. Then
any element of G has the form gα1

1 · · · · · gαn
n with 0 ≤ αi < `i. Hence |G| ≤ ∏n

i=1 `i. ¤

4. Show that if g is an element of a group and o(g) = n then gk, k 6= 0, has order
[n, k]/k = n/(n, k). Show that the number of generators of 〈g〉 is the number of positive
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integers < n which are relatively prime to n. This number is denoted as φ(n) and φ is
called the Euler φ-function.

Proof. (1) Let g ∈ G with o(g) = n and o(gk) = h. It’s clear that (gk)[n,k]/k = 1. Thus
h|[n, k]/k and hk|[n, k]. On the other hand, (gk)h = 1 implies n|hk. Hence hk is a
common multiple of n and k and divides [n, k]. Therefore hk = [n, k], h = [n, k]/k =
n/(n, k).

(2) gk ∈ 〈g〉 is a generator of 〈g〉 if and only if o(gk) = n. By the result of (1),
o(gk) = n/(n, k). Hence gk is a generator if and only if (n, k) = 1. ¤

5. Show that any finitely generated subgroup of the additive group of rationals (Q, +, 0)
is cyclic. Use this to prove that this group is not isomorphic to the direct product of
two copies of it.

Proof. (1) Let H be the subgroup of (Q, +) generated by { q1

p1
, . . . , qn

pn
}. Then H is

contained in the cyclic group 〈 1
p1·····pn

〉. Hence H is cyclic.

(2) Let H be the subgroup of Q ⊕ Q which is generated by (1,0) and (0,1). We
shall show that H is not cyclic. Thus Q⊕Q 6' Q.

Suppose that H is cyclic with generator (a, b) 6= (0, 0). Then (1, 0) = n(a, b)
and (0, 1) = m(a, b) for some n,m 6= 0. Which implies a = b = 0 and leads to a
contradiction. ¤

Remark. Given a finitely generated subgroup H = 〈 q1

p1
, . . . , qn

pn
〉, (pi, qi) = 1, of (Q, +),

the reader is urged to construct a generator of H explicitly.

Exercise: Show that if o(a) = n = rs where (r, s) = 1, then 〈a〉 ' 〈b〉 × 〈c〉 where
o(b) = r and o(c) = s. Hence prove that any finite cyclic group is isomorphic to a
direct product of cyclic groups of prime power order.
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