Basic Algebra (Solutions)

by Huah Chu

Exercises (§1.4, p.42)

1. Let A be a monoid, M(A) the monoid of transformations of A into itself, Aj
the set of left translations a;, and Agr the set of right translations ar. Show that
Ay (respectively Ag) is the centralizer of Agr (respectively Ap) in M(A) and that
AN Ag ={cg = cp|c € C}, C the center of A.

Proof. (1) We show that A7 = Chya)(Ar). The case of Ap = Cua)(AL) is quite
similar.

Since (agrbr)(z) = agr(bxr) = (bx)a = b(xa) = br(za) = (bragr)(x), hence Ay C
Cuay(Ag). Given any p € Cya)(Agr). For all a € M, arp = pag. In particular,
arp(l) = par(1), p(1)a = p(1 - a) = p(a). This means that p = (p(1)), € AL.

(2) AL /\AR = {CR = CL|C S C}

It is clearly that cg = ¢ for ¢ € C. Given any p € Ay A Ag, p = ar, for some a.
Since p € Ar = C(AyL), hence, for all b € M, apbr(1) = brar(1l). Thus ab = ba and
a€C. Sope{clceC}. O

2. Show that if n > 3, then the center of S,, is of order 1.

Proof. Given any 1 # « € S,,, there exists i such that «(i) # 1, say «(i) = j. Choose
k # 1,7 since n > 3. Take 7 be any permutation in S,, such that (i) =i and v(j) = k.
Then ya(i) = v(j) = k, and a7y(i) = a(i) = j. Hence ya # ay and o ¢ C(S,). O

Remark. For any a € S,, (n > 3), we can find 5 € S, such that it has the same cycle
decomposition as a and « # 3 (§1.6). Then there exists v such that yay™! = 3 (Ex.
4, §1.6) and ya # ar.

3. Show that any group in which every a satisfies a®> = 1 is abelian. What if a® = 1 for
every a?
Proof. (1) Note that the condition a®* = 1 implies a = a~! for all a € G. For any
a,b € G, since (ab)? =1 it follows that ab = (ab)™'. But (ab)™* = b"'a™! = ba. Hence
ab = ba.

(2) If a®> =1 for all @ € G, G need not be abelian. We shall use Sylow’s Theorem
and group extensions to construct a counterexample.
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Let G be a finite nonabelian group such that a® = 1 for all « € G. By Sylow’s
Theorem (§1.13), |G| = 3™. If |G| = 9, G is abelian (§1.12, exercise 6). Hence we
assume that |G| = 27.

G contains a normal subgroup K of order 9 (exercise 5.2, p.87 in Rotman: The
theory of groups, An introduction). K must be elementary abelian, that is, K =
(a,bla® = b* = 1,ab = ba). G/K ~ H = (h) is a cyclic group of order 3. Then G is an
extension of K by H (see the Remark after exercise 9, §1.12).

h induces an automorphism « of K. If we use the additive notation for composition
of K, then K can be regard as a 2-dimensional vector space over finite field F3 and «
can be represented as a matrix in Ms(IF3). By suitable changing the basis, assume «a

11) 1 (83, 10). Since o® = 1, it is not difficult to show that

has the rational form [ 2
-1 -1

We have known Extyy (Z, H) = H*(H,K) and H*(H,K) = K" /NK for finite
cyclic group H, where K = {k € K|ak =k}, NK = {(1 + a + o?)k|k € K}. Hence
to find all extensions of K by H, it suffices to compute H?(H, K) first. It is easy to
find that ak = k = k = (x,z) for x € F3 and 1 + o + a* = 0. Hence NK = 0 and
H?*(H,K) =17/37.

We first check the trivial case, that is, semi-direct product of H by K. Since

0 1 o 17[0o 11" [11 e ato 1L 1T for st
1 =1 || =1 =1 ||1 =1 | T o 1 pYecanseatoy o | lofsupie

ity. Then G = (a,b, c|a® = b> = ¢3 = 1,ab = ba, ac = ca, bc = cab).

Now we check that 22 = 1 for all x € G-

First note that a is in the center of G and from bc = cab, we have cb = a’bc,
beb? = ac and c?be = ba. Thus

(be)® = b(cb)cbe = ba*b(ccbe) = ba*bba = a’b® = 1.

The verification of (bc?)? = (b%c)® = (b?c?)® = 1 are similar, and left to the reader.
Moreover, since (az)™ = a™z™, so (a'b/c*)? = a®(b/cF)® = 1. Hence the result. Thus G
is the desired counter-example. O

the only solution is a = [ 0 1 } :

Remarks: (1) Since H*(H, K) ~ 7/37, we can find a nontrivial factor set f : H X
H — K defined by f(h,h) = ab, f(h*,h) = f(h,h?) = 1, f(h* h?) = a®* and
f(l,z) = f(z,1) =1 for x € H. Let G be the set of all pairs (k,z) € K x H with the
composition

(k, 2) (K, y) = (k(zk) f (2, y), zy).
Where zk’ is defined as follows: (i) If z = 1 then zk' = k’; (ii) z = h, ¥’ = a'l’ then
xk!' = a7 (iii) if x = k%, k' = a'b?, then zk’ = a'T2 . Then

(1,h)* = (1 - (h1) - ab, h*)(1,h) = (ab, h*)(1,h) = (ab, 1).
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Thus (1, k) has order 9, which does not satisfy our condition.

(2) The above discussions also hold for any odd prime p. That is, G = (a, b, c|a? =
b = P = 1,ab = ba,ca = ac,bc = cab) is nonabelian group such that z? = 1 for all
zeqG.

(3) For the group extensions and cohomology of groups, we refer to J. J. Rotman:
The theory of groups; An introduction; or S. MacLane: Homology.

(4) This exercise may be regard as a special case of Burnside’s problem: Let G be
finitely generated and n is the l.c.m of the orders of elements, is G a finite group? This
exercise shows that, if n = 2, G is abelian. In fact, if n = 3, G is a finite nilpotent
group of class < 3. If n =4 or 6, GG is a finite group. We refer the reader to B. Huppert:
Endlich Gruppen, or M. Hall: The theory of groups, Chap. 18, for more defails.

4. For a given binary composition define a simple product of the sequence of elements
ai, as, ..., a, inductively as either a;u where u is a simple product of ao,...,a, or as
va, where v is a simple product of aq, ..., a,_;. Show that any product of > 2" elements
can be written as a simple product to  elements (which are themselves products).

Proof. We prove it by induction on r. There is nothing to prove for r = 1. Any product
of n elements ay,...,a,, n = 2", r > 1, has the form of (ay,...,a;)(ait1,...,a,),
where (aq,...,a;) is a product of ay,...,a;. Then one of the sequence {ay,...,a;}
and {a@;y1,...,a,} has length > 2"7! say {ai,...,a;}. By the inductive hypothesis,
(ay,...,a;) is a simple product of r — 1 elements and (as,...,a;)(aiy1,-..,a,) is a
simple product of r elements. Il

Remark. The condition of > 2" may be refined to > 27! + 1.

The reader may try to give a product of 8 elements which is not a simple product
of 4 elements.



