
Basic Algebra (Solutions)

by Huah Chu

Exercises (§1.4, p.42)

1. Let A be a monoid, M(A) the monoid of transformations of A into itself, AL

the set of left translations aL, and AR the set of right translations aR. Show that
AL (respectively AR) is the centralizer of AR (respectively AL) in M(A) and that
AL ∩ AR = {cR = cL|c ∈ C}, C the center of A.

Proof. (1) We show that AL = CM(A)(AR). The case of AR = CM(A)(AL) is quite
similar.

Since (aRbL)(x) = aR(bx) = (bx)a = b(xa) = bL(xa) = (bLaR)(x), hence AL ⊆
CM(A)(AR). Given any ρ ∈ CM(A)(AR). For all a ∈ M , aRρ = ρaR. In particular,
aRρ(1) = ρaR(1), ρ(1)a = ρ(1 · a) = ρ(a). This means that ρ = (ρ(1))L ∈ AL.

(2) AL ∧ AR = {cR = cL|c ∈ C}:
It is clearly that cR = cL for c ∈ C. Given any ρ ∈ AL ∧ AR, ρ = aL for some a.

Since ρ ∈ AR = C(AL), hence, for all b ∈ M , aLbL(1) = bLaL(1). Thus ab = ba and
a ∈ C. So ρ ∈ {cL|c ∈ C}. ¤

2. Show that if n ≥ 3, then the center of Sn is of order 1.

Proof. Given any 1 6= α ∈ Sn, there exists i such that α(i) 6= 1, say α(i) = j. Choose
k 6= i, j since n ≥ 3. Take γ be any permutation in Sn such that γ(i) = i and γ(j) = k.
Then γα(i) = γ(j) = k, and αγ(i) = α(i) = j. Hence γα 6= αγ and α /∈ C(Sn). ¤

Remark. For any α ∈ Sn (n ≥ 3), we can find β ∈ Sn such that it has the same cycle
decomposition as α and α 6= β (§1.6). Then there exists γ such that γαγ−1 = β (Ex.
4, §1.6) and γα 6= αγ.

3. Show that any group in which every a satisfies a2 = 1 is abelian. What if a3 = 1 for
every a?

Proof. (1) Note that the condition a2 = 1 implies a = a−1 for all a ∈ G. For any
a, b ∈ G, since (ab)2 = 1 it follows that ab = (ab)−1. But (ab)−1 = b−1a−1 = ba. Hence
ab = ba.

(2) If a3 = 1 for all a ∈ G, G need not be abelian. We shall use Sylow’s Theorem
and group extensions to construct a counterexample.
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Let G be a finite nonabelian group such that a3 = 1 for all a ∈ G. By Sylow’s
Theorem (§1.13), |G| = 3n. If |G| = 9, G is abelian (§1.12, exercise 6). Hence we
assume that |G| = 27.

G contains a normal subgroup K of order 9 (exercise 5.2, p.87 in Rotman: The
theory of groups, An introduction). K must be elementary abelian, that is, K =
〈a, b|a3 = b3 = 1, ab = ba〉. G/K ' H = 〈h〉 is a cyclic group of order 3. Then G is an
extension of K by H (see the Remark after exercise 9, §1.12).

h induces an automorphism α of K. If we use the additive notation for composition
of K, then K can be regard as a 2-dimensional vector space over finite field F3 and α
can be represented as a matrix in M2(F3). By suitable changing the basis, assume α

has the rational form

[
0 1
a b

]
(§3, 10). Since α3 = 1, it is not difficult to show that

the only solution is α =

[
0 1

−1 −1

]
.

We have known Ext2
Z[H](Z, H) = H2(H,K) and H2(H, K) = KH/NK for finite

cyclic group H, where KH = {k ∈ K|αk = k}, NK = {(1 + α + α2)k|k ∈ K}. Hence
to find all extensions of K by H, it suffices to compute H2(H,K) first. It is easy to
find that αk = k ⇒ k = (x, x) for x ∈ F3 and 1 + α + α2 = 0. Hence NK = 0 and
H2(H, K) = Z/3Z.

We first check the trivial case, that is, semi-direct product of H by K. Since[
0 1
1 −1

] [
0 1

−1 −1

] [
0 1
1 −1

]−1

=

[
1 1
0 1

]
, we change α to

[
1 1
0 1

]
for simplic-

ity. Then G = 〈a, b, c|a3 = b3 = c3 = 1, ab = ba, ac = ca, bc = cab〉.
Now we check that x3 = 1 for all x ∈ G:
First note that a is in the center of G and from bc = cab, we have cb = a2bc,

bcb2 = ac and c2bc = ba. Thus

(bc)3 = b(cb)cbc = ba2b(ccbc) = ba2bba = a3b3 = 1.

The verification of (bc2)3 = (b2c)3 = (b2c2)3 = 1 are similar, and left to the reader.
Moreover, since (ax)n = anxn, so (aibjck)3 = a3i(bjck)3 = 1. Hence the result. Thus G
is the desired counter-example. ¤

Remarks: (1) Since H2(H,K) ' Z/3Z, we can find a nontrivial factor set f : H ×
H → K defined by f(h, h) = ab, f(h2, h) = f(h, h2) = 1, f(h2, h2) = a2b2, and
f(1, x) = f(x, 1) = 1 for x ∈ H. Let G be the set of all pairs (k, x) ∈ K ×H with the
composition

(k, x)(k′, y) = (k(xk′)f(x, y), xy).

Where xk′ is defined as follows: (i) If x = 1 then xk′ = k′; (ii) x = h, k′ = aibj then
xk′ = ai+jbj; (iii) if x = h2, k′ = aibj, then xk′ = ai+2jbj. Then

(1, h)3 = (1 · (h1) · ab, h2)(1, h) = (ab, h2)(1, h) = (ab, 1).
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Thus (1, h) has order 9, which does not satisfy our condition.
(2) The above discussions also hold for any odd prime p. That is, G = 〈a, b, c|ap =

bp = cp = 1, ab = ba, ca = ac, bc = cab〉 is nonabelian group such that xp = 1 for all
x ∈ G.

(3) For the group extensions and cohomology of groups, we refer to J. J. Rotman:
The theory of groups; An introduction; or S. MacLane: Homology.

(4) This exercise may be regard as a special case of Burnside’s problem: Let G be
finitely generated and n is the l.c.m of the orders of elements, is G a finite group? This
exercise shows that, if n = 2, G is abelian. In fact, if n = 3, G is a finite nilpotent
group of class ≤ 3. If n = 4 or 6, G is a finite group. We refer the reader to B. Huppert:
Endlich Gruppen, or M. Hall: The theory of groups, Chap. 18, for more defails.

4. For a given binary composition define a simple product of the sequence of elements
a1, a2, . . . , an inductively as either a1u where u is a simple product of a2, . . . , an or as
van where v is a simple product of a1, . . . , an−1. Show that any product of ≥ 2r elements
can be written as a simple product to r elements (which are themselves products).

Proof. We prove it by induction on r. There is nothing to prove for r = 1. Any product
of n elements a1, . . . , an, n = 2r, r > 1, has the form of (a1, . . . , ai)(ai+1, . . . , an),
where (a1, . . . , ai) is a product of a1, . . . , ai. Then one of the sequence {a1, . . . , ai}
and {ai+1, . . . , an} has length ≥ 2r−1, say {a1, . . . , ai}. By the inductive hypothesis,
(a1, . . . , ai) is a simple product of r − 1 elements and (a1, . . . , ai)(ai+1, . . . , an) is a
simple product of r elements. ¤

Remark. The condition of ≥ 2r may be refined to ≥ 2r−1 + 1.

The reader may try to give a product of 8 elements which is not a simple product
of 4 elements.
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