Basic Algebra (Solutions)

by Huah Chu

Exercises $(\S1.3, p.39)$

1. Use a multiplication table for S_3 (exercise 3, §1.2) and the isomorphism $a \to a_L$ (a_L the left translation defined by a) to obtain a subgroup of S_6 isomorphic to S_3 .

Sol. We rewrite the elements of S_3 as $1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, $3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, $4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, $6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$. Then the isomorphism $a \to a_L$ are:

$$1 \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 6 & 3 & 4 \end{pmatrix} = (1 \ 2)(3 \ 5)(4 \ 6),$$

$$3 \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5 \end{pmatrix} = (1 \ 3)(2 \ 4)(5 \ 6),$$

$$4 \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 5 & 1 & 2 \end{pmatrix} = (1 \ 4 \ 5)(2 \ 3 \ 6),$$

$$5 \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 1 & 4 & 3 \end{pmatrix} = (1 \ 5 \ 4)(2 \ 6 \ 3),$$

$$6 \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 1 & 4 & 3 \end{pmatrix} = (1 \ 6)(2 \ 5)(3 \ 4).$$

2. Show that the two groups in examples 11 and 13 on pages 33 and 34 of "Basic Algebra, vol. 1" are isomorphic. Obtain a subgroup of S_n isomorphic to these groups. Ans. For the rotation through angle $\frac{2\pi}{n}$ in R_n , we map it into the complex number $z_1 = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ in U_n . This mapping is an isomorphism. The subgroup of S_n generated by $\begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix}$ isomorphic to these groups.

3. Let G be a group. Define the right translation a_R for $a \in G$ as the map $x \to xa$ in G. Show that $G_R = \{a_R\}$ is a transformation group of the set G and $a \to a_R^{-1}$ is an isomorphism of G with G_R .

Proof. The proof is similar to that of Cayley's Theorem. We leave it to the reader. \Box

4. Is the additive group of integers isomorphic to the additive group of rationals?

Ans. No. Let $\phi : (\mathbb{Z}, +) \to (\mathbb{Q}, +)$ be any homomorphism. Let $\phi(1) = a$. Then $\phi(n) = \phi(1 + \dots + 1) = na$ for $n \in \mathbb{N}$, and $\phi(-n) = -na$. Write $a = \frac{r}{s}$ with $r, s \in \mathbb{Z}$, $s \neq 0, (r, s) = 1$. If p is any prime number and $p \nmid s$, then $\frac{1}{p} \notin \phi(\mathbb{Z})$. Hence ϕ is not onto.

5. Is the additive group of rationals isomorphic to the multiplicative group of non-zero rationals?

Ans. No. Suppose $\eta : (\mathbb{Q}^*, \cdot) \to (\mathbb{Q}, +)$ is an isomorphism. Then

$$\eta(-1) + \eta(-1) = \eta((-1)(-1)) = \eta(1) = 0, \ \eta(-1) = 0.$$

A contradiction.

Remarks: (1) In fact, (\mathbb{Q}^*, \cdot) has an element of order 2, that is, -1. But none of the elements in $(\mathbb{Q}, +)$ has finite order.

(2) Furthermore, the additive group of rationals is never isomorphic to the multiplicative group of positive rationals since nX = a is solvable for any $n \in \mathbb{N}$, for any $a \in \mathbb{Q}$ and $Y^n = b$ is not always solvable for any $n \in \mathbb{N}$, for and $b \in \mathbb{Q}^+$.

6. In \mathbb{Z} define $a \circ b = a + b - ab$. Show that $(\mathbb{Z}, \circ, 0)$ is a monoid and that the map $a \to 1 - a$ is an isomorphism of the multiplicative monoid $(\mathbb{Z}, \cdot, 1)$ with $(\mathbb{Z}, \circ, 0)$.

Proof. Omitted.