Basic Algebra (Solutions)

by Huah Chu

Exercises $(\S1.10, p.65)$

1. Show that $\mathbb{Z}l \cap \mathbb{Z}k = \mathbb{Z}[l,k]$ and $\mathbb{Z}l + \mathbb{Z}k = \{a+b|a \in \mathbb{Z}l, b \in \mathbb{Z}k\} = \mathbb{Z}(l,k)$. *Proof.* (1) $\mathbb{Z}l \cap \mathbb{Z}k = \mathbb{Z}[l,k]$: Since $a \in \mathbb{Z}l \cap \mathbb{Z}k \Leftrightarrow l|a$ and $k|a \Leftrightarrow [l,k]|a \Leftrightarrow a \in \mathbb{Z}[l,k]$. (2) $\mathbb{Z}l + \mathbb{Z}k = \mathbb{Z}(l,k)$.

Since a g.c.d. (l,k) = xl + yk for some $x, y \in \mathbb{Z}$ (see p.23), hence $\mathbb{Z}(l,k) \subset \mathbb{Z}l + \mathbb{Z}k$. On the other hand, (l,k)|l and (l,k)|k imply that $\mathbb{Z}l \subset \mathbb{Z}(l,k)$ and $\mathbb{Z}k \subset \mathbb{Z}(l,k)$. Hence the result.

2. Let $\{H_{\alpha}\}$ be a collection of subgroups containing the normal subgroup K. Show that $\cap(H_{\alpha}/K) = (\cap H_{\alpha})/K$.

Proof. We just need to prove that: if $xK \in \cap(H_{\alpha}/K)$ then $x \in \cap H_{\alpha}$.

For any α , since $xK \in H_{\alpha}/K$, so $xK = x_{\alpha}K$ for some $x_{\alpha} \in H_{\alpha}$. Then $xx_{\alpha}^{-1} \in K \subset H_{\alpha}$ and $x \in H_{\alpha}$. Hence the result.