Basic Algebra (Solutions) by Huah Chu

Exercises $(\S0.6, p.24)$

1. Show that if p is a prime and p|ab then either p|a or p|b.

Proof. (I) Write $a = \pm p_1^{\alpha_1} \cdots p_n^{\alpha_n}$, $b = \pm p_1^{\beta_1} \cdots p_n^{\beta_n}$ where p_1, \ldots, p_n are prime numbers and $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ are nonnegative integers. Hence $ab = \pm p_1^{\alpha_1+\beta_1} p_2^{\alpha_2+\beta_2} \cdots p_n^{\alpha_n+\beta_n}$. Since p|ab, we have that ab = pc for some integer c. Write $c = \pm q_1^{y_1} \cdots q_m^{y_m}$ where q_1, \ldots, q_n are prime numbers and y_1, \ldots, y_m are positive integers. Hence $\pm p_1^{\alpha_1+\beta_1}$ $p_2^{\alpha_2+\beta_2} \cdots p_n^{\alpha_n+\beta_n} = \pm p \cdot q_1^{y_1} \cdots q_m^{y_m}$.

By the fundamental theorem of arithmetic, we conclude that $p = p_i$ for some i, $1 \le i \le n$, and $\alpha_i + \beta_i \ge 1$. Thus $\alpha_i \ge 1$ or $\beta_i \ge 1$ since $\alpha_i, \beta_i \ge 0$. It follows that $p = P_i | a$, if $\alpha_i \ge 1$, or $p = p_i | b$ if $\beta_i \ge 1$.

(II) Suppose p|ab and $p \nmid a$. We have (p, a) = 1. If b = 0, then p|b trivially. Hence we assume $b \neq 0$, then the least positive integer in $I = \{px + ay | x, y \in \mathbb{Z}\}$ is 1. So 1 = px + ay for some x and y. b = pxb + aby. ¿From p|ab we have p|b.

2. Define g.c.d. and l.c.m. for more than two integers and prove their existence.

Proof. (1) Let a_1, \ldots, a_n be non-zero integers. An integer c is called a g.c.d. of a_1, \ldots, a_n if it satisfies the following conditions

(i) $c|a_i$ for all $i, 1 \le i \le n$

(ii) If d is any integer with $d|a_i$ for all $i, 1 \le i \le n$, then d|c.

To prove the existence of a g.c.d., consider the element $b \stackrel{\text{def}}{=} \min\{a_1b_1 + a_2b_2 + \cdots + a_nb_n \in \mathbb{N}|b_1, \ldots, b_n \in \mathbb{Z}\}$. Clearly *b* satisfies the above condition (ii). We shall show that *b* satisfies the condition (i) also. In fact, write $b = a_1\beta_1 + \cdots + a_n\beta_n$ for some $\beta_i \in \mathbb{Z}$. For any a_i , suppose that $b \nmid a_i$. Write $a_i = b \cdot c + r$ with $c, r \in \mathbb{Z}$, $1 \leq r \leq b-1$. Then $r = a_i - b \cdot c = a_i - (a_1\beta_1 + \cdots + a_n\beta_n)c = a_1(-\beta_1c) + a_2(-\beta_2c) + \cdots + a_{i-1}(-\beta_{i-1}c) + a_i(1 - \beta_ic) + a_{i+1}(-\beta_{i+1}c) + \cdots + a_n(-\beta_nc)$. A contradiction to the minimality of *b*.

It is easy to show that the g.c.d. is unique up to the sign, i.e., all the possible g.c.d.'s are just $\pm b$, where b is the number constructed in the proceeding section.

In general, if a_1, \ldots, a_n are integers, we define a g.c.d. of a_1, \ldots, a_n to be a g.c.d. of the non-zero elements in $\{a_1, \ldots, a_n\}$.

(2) We can define an l.c.m. of a_1, \ldots, a_n in ad hoc ways. To prove the existence, we define b as $b = [\cdots [[a_1, a_2], a_3], \ldots, a_n]$. It is routine to check by induction on n that b satisfies the conditions (i) and (ii) in the definition of an l.c.m.

Remark. Alternatively we can simply define an l.c.m. of a_1, \ldots, a_n to be $[\cdots [[a_1, a_2], a_3], \ldots, a_n]$. Hence it is desirable to show that such a definition doesn't depend on the ordering. It is the reason why we don't adopt this approach in our proof.