Basic Algebra (Solutions)

by Huah Chu

Exercises (§0.5, p.21)

1. Show that $x \ge y \Leftrightarrow -x \le -y$.

Proof. Let
$$x = \overline{(a,b)}$$
 and $y = \overline{(c,d)}$. Then $x \ge y \Leftrightarrow a+d \ge b+c \Leftrightarrow d+a \ge c+b \Leftrightarrow \overline{(d,c)} \ge \overline{(b,a)} \Leftrightarrow -y \ge -x$.

2. Prove that any non-vacuous set S of integers which is bounded below (above), in the sense that there exists an integer b(B) such that $b \leq s$ ($B \geq s$), $s \in S$, has a least (greatest) element.

Proof. We prove the case of bounded below only. Let b be the lower bound of S. Consider the set $S - b = \{s - b | s \in S\}$. Clearly $S - b \subset \mathbb{N}$. By the well-ordered property, S - b has a least element $s_0 - b$. It follows that s_0 is a least element of S. \square

3. Define |x| = x if $x \ge 0$ and |x| = -x if x < 0. Prove that |xy| = |x||y| and $|x + y| \le |x| + |y|$.

Proof. (0) We first prove that (-x)y = -(xy) = x(-y), -(x+y) = (-x) + (-y): Let x = (a, b), y = (c, d). Then (-x)y = (b, a)(c, d) = (bc + ad, bd + ac) = -(ac + bd, ad + bc) = -(xy). The other equalities can be proved similarly.

- (1) (i) If $x \ge 0$ and $y \ge 0$, then |xy| = xy = |x||y|.
- (ii) If $0 \ge x$ and $y \ge 0$, then $0 = 0y \ge xy$ by OM'. Thus |xy| = -(xy) = (-x)y = |x||y|. The case of $x \ge 0$, $0 \le y$ is similar.
- (iii) If $x \le 0$, $y \le 0$, then $-(xy) = (-x)y \le 0$ (by (ii)) and $xy \ge 0$. Thus |xy| = xy = -((-x)y) = (-x)(-y) = |x||y|.
 - (2) $|x+y| \le |x| + |y|$:
 - (i) If $x \ge 0$ and $y \ge 0$, then $x + y \ge 0$. Hence |x + y| = x + y = |x| + |y|.
- (ii) If $x \ge 0$ and $y \le 0$, then |x + y| is equal to x + y or -(x + y). Since $y \le 0$, $y \le -y$, hence $x + y \le x + (-y)$. On the other hand, $-x \le x$, hence $-(x + y) = (-x) + (-y) \le x + (-y)$. In any case, $|x + y| \le x + (-y) = |x| + |y|$.
 - (iii) If $x \le 0$ and $y \ge 0$, we can prove the inequality as (ii).
- (iv) If $x \le 0$ and $y \le 0$, then $x + y \le 0$. Thus |x + y| = -(x + y) = (-x) + (-y) = |x| + |y|.