Basic Algebra (Solutions)

by Huah Chu

Exercises (§0.4, pp.18–19)

1. Prove that if $a \ge b$ and $c \ge d$ then $a + c \ge b + d$ and $ac \ge bd$.

Proof. (1) $a \ge b$ and $c \ge d$, then $a + c \ge b + c$ and $c + b \ge d + b$ by *OA*. By the commutative law *A*2, we have $b + d \ge b + d$. Hence $a + c \ge b + d$ by *O*2. (2) (Omitted.)

2. Prove the following extension of the first principle of induction: Let $s \in \mathbb{N}$ and assume that for every $n \geq s$ we have a statement E(n). Suppose E(s) holds, and if E(r) holds for some $r \geq s$, then $E(r^+)$ holds. Then E(n) is true for all $n \geq s$. State and prove the analogous extension of the second principle of induction.

Proof. (1) The extension of the first principle of induction: We shall show that the subset $F = \{n \in \mathbb{N} | n > s \text{ and } E(n) \text{ is false}\}$ is vacuous. Suppose not. Then by the well-ordering principle, F contains a least element ℓ . Then $E(\ell - 1)$ is true $(\ell - 1 \ge s)$. This implies that $E((\ell - 1)^+)$ is true by the hypothese. A contradiction.

(2) The extension of the second principle of induction: Let $s \in \mathbb{N}$ and assume that for every $n \geq s$, we have a statement E(n). Suppose for any particular r > s, E(r) is true if E(t) is true for all $s \leq t < r$. Then E(n) is true for all n. The proof is analogue to that of (1) and we left to the reader.

3. Prove by induction that if c is a real number ≥ -1 and $n \in \mathbb{N}$ then $(1+c)^n \geq 1+nc$. *Proof.* (Omitted.)

4. (Henkin.) Let $N = \{0, 1\}$ and define $0^+ = 1$, $1^+ = 1$. Show that N satisfies Peano's axioms 1 and 3 but not 2. Let ϕ be the map of N into N such that $\phi(0) = 1$ and $\phi(1) = 0$. Show that the recursion theorem breaks down for N and this ϕ , that is, there exists no map f of N into itself satisfying f(0) = 0, $f(n^+) = \phi(f(n))$.

Proof. The first statement is trivial. We prove the second. Suppose that we have a map $f: N \to N$ satisfying f(0) = 0, $f(n^+) = \phi(f(n))$. Then

$$f(1) = f(0^+) = \phi(f(0)) = \phi(0) = 1.$$

But

$$f(1) = f(1^+) = \phi(f(1)) = \phi(1) = 0.$$

It leads to a contradiction.

5. Prove A1 and M2.

Proof. (1) A1. (x + y) + z = x + (y + z): Fix y and z, we shall prove this equality by induction.

(i) x = 0; (0 + y) + z = y + z = 0 + (y + z).

(ii) Suppose it holds for x, then

$$(x^{+} + y) + z = (x + y)^{+} + z = ((x + y) + z)^{+}$$
$$= (x + (y + z))^{+} = x^{+} + (y + z).$$

Therefore the assertion holds for all x.

(2) Before proving M2, we first show that $xy^+ = xy + x$: Fix y, we prove this statement hold for all $x \in \mathbb{N}$ by induction.

(i) As $x = 0, 0y^+ = 0 = 0 \cdot y + 0$.

(ii) Suppose it holds x. Then $x^+y^+ = xy^+ + y^+ = (xy+x) + y^+ = xy + (x+y^+) = xy + (y^+ + x) = xy + (y+x)^+ = xy + (x+y)^+ = xy + (x^+ + y) = xy + (y+x^+) = (xy+y) + x^+ = x^+y + x^+.$

The assertion is proved.

(3) M2. xy = yx: Fix y, we prove it by induction on x.

(i) x = 0. Then 0y = 0 by definition. Next, we show that $y \cdot 0 = 0$. Because of $0 \cdot 0 = 0$ and $y^+ \cdot 0 = y \cdot 0 + 0 = 0 + 0 = 0$, the assertion holds. Thus $0 \cdot y = y \cdot 0$.

(ii) Suppose xy = yx. Then $x^+y = xy + y = yx + y = yx^+$ by (2). Hence xy = yx holds for all x.