
Basic Algebra (Solutions)

by Huah Chu

Exercises (§0.4, pp.18–19)

1. Prove that if a ≥ b and c ≥ d then a + c ≥ b + d and ac ≥ bd.

Proof. (1) a ≥ b and c ≥ d, then a + c ≥ b + c and c + b ≥ d + b by OA. By the
commutative law A2, we have b + d ≥ b + d. Hence a + c ≥ b + d by O2.

(2) (Omitted.)

2. Prove the following extension of the first principle of induction: Let s ∈ N and
assume that for every n ≥ s we have a statement E(n). Suppose E(s) holds, and if
E(r) holds for some r ≥ s, then E(r+) holds. Then E(n) is true for all n ≥ s. State
and prove the analogous extension of the second principle of induction.

Proof. (1) The extension of the first principle of induction: We shall show that the
subset F = {n ∈ N|n > s and E(n) is false} is vacuous. Suppose not. Then by the
well-ordering principle, F contains a least element `. Then E(`−1) is true (`−1 ≥ s).
This implies that E((` − 1)+) is true by the hypothese. A contradiction.

(2) The extension of the second principle of induction: Let s ∈ N and assume that
for every n ≥ s, we have a statement E(n). Suppose for any particular r > s, E(r) is
true if E(t) is true for all s ≤ t < r. Then E(n) is true for all n. The proof is analogue
to that of (1) and we left to the reader. ¤

3. Prove by induction that if c is a real number ≥ −1 and n ∈ N then (1+c)n ≥ 1+nc.

Proof. (Omitted.) ¤

4. (Henkin.) Let N = {0, 1} and define 0+ = 1, 1+ = 1. Show that N satisfies Peano’s
axioms 1 and 3 but not 2. Let φ be the map of N into N such that φ(0) = 1 and
φ(1) = 0. Show that the recursion theorem breaks down for N and this φ, that is,
there exists no map f of N into itself satisfying f(0) = 0, f(n+) = φ(f(n)).

Proof. The first statement is trivial. We prove the second. Suppose that we have a
map f : N → N satisfying f(0) = 0, f(n+) = φ(f(n)). Then

f(1) = f(0+) = φ(f(0)) = φ(0) = 1.
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But
f(1) = f(1+) = φ(f(1)) = φ(1) = 0.

It leads to a contradiction. ¤

5. Prove A1 and M2.

Proof. (1) A1. (x + y) + z = x + (y + z): Fix y and z, we shall prove this equality by
induction.

(i) x = 0; (0 + y) + z = y + z = 0 + (y + z).
(ii) Suppose it holds for x, then

(x+ + y) + z = (x + y)+ + z = ((x + y) + z)+

= (x + (y + z))+ = x+ + (y + z).

Therefore the assertion holds for all x.
(2) Before proving M2, we first show that xy+ = xy + x: Fix y, we prove this

statement hold for all x ∈ N by induction.
(i) As x = 0, 0y+ = 0 = 0 · y + 0.
(ii) Suppose it holds x. Then x+y+ = xy+ + y+ = (xy + x) + y+ = xy + (x + y+) =

xy + (y+ + x) = xy + (y + x)+ = xy + (x + y)+ = xy + (x+ + y) = xy + (y + x+) =
(xy + y) + x+ = x+y + x+.

The assertion is proved.
(3) M2. xy = yx: Fix y, we prove it by induction on x.
(i) x = 0. Then 0y = 0 by definition. Next, we show that y · 0 = 0. Because of

0 · 0 = 0 and y+ · 0 = y · 0 + 0 = 0 + 0 = 0, the assertion holds. Thus 0 · y = y · 0.
(ii) Suppose xy = yx. Then x+y = xy + y = yx + y = yx+ by (2). Hence xy = yx

holds for all x. ¤
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