However, if F'x is constant on some interval, then F'y 1is not well defined by (2). The problem is
avoided by defining F)}l(y) for 0 <y <1by

Fy'(y) = inf{z : Fx(z) >y}, (3)
At the end point of the range of y, Fgl(l) = o0 if Fx(x) < 1 for all z and, for any Fl, F)?l(()) =

—0Q.

Theorem 1.4 (Probability integral transformation) Let X have continuous cdf Fx(x) and define
the random variable Y as Y = Fx(X). Then Y is uniformly distributed on (0,1), that is, P(Y <
y) =y, 0<y <1

PRrROOF: For Y = Fx(X) we have, for 0 < y < 1,

PY <y) = P(Fx(X) <v)
(Fx'[Fx(X)] < Fx'(y)
(X < Fy'(y)
Fx(Fx'(y) =v.

At the endpoints we have P(Y < y) =1for y > 1 and P(Y < y) = 0 for y < 0, showing that YV’

P
P

has a uniform distribution.

The reasoning behind the equality
P(Fy'[Fx(X)] < Fx'(y)) = P(X < Fx'(y))

is somewhat subtle and deserves additional attention. If F'x is strictly increasing, then it is true that
Fy'(Fx(z)) = . However, if Fx is flat, it may be that Fy!(Fx(z)) # 2. Then Fy'(Fx(z)) = 1,
since P(X < z) = P(X < x) for any = € [z1,22]. The flat cdf denotes a region of 0 probability
Pz <X <z)=Fx(z)— Fx(z1)=0.0

2 Expected values

Definition 2.1 The expected value or mean of a random variable g(X), denoted by Eg(X), is

ffooo 9() fx (z)dx if X is continuous

Yorex 9@ fx(x) = cxr9(@)P(X =x) if X is discrete,

Eg(X) =

provided that the integral or sum exists. If E|g(X)| = oo, we say that Eg(X) does not exist.



Example 2.1 (Ezponential mean) Suppose X has an exponential () distribution, that is, it has

pdf given by
1
fx(z) = Xe_mp‘, 0<x<o0,A>0.

Then EX is given by
o
1
EX :/ r—e "z = A
0o A

Example 2.2 (Binomial mean) If X has a binomial distribution, its pmf is given by

P(X =z)= (Z)pz(l -p)"*, x=0,1,...,n,

where n is a positive integer 0 < p < 1, and for every fixed pair n and p the pmf sums to 1.

EX = Z ) "= éx(ﬁ)pm(l -p)"

=0 <
n—1
_ n—1 e ny (n—1
-2 1>p e o) =n(GT0)
=1
n—1 n—1
= n( )pyH —p)"" WD (substitute y = x — 1)
Y
y=0
n—1 _1
= np < )py (1-p)" 7Y
y=0 y
= np.

Example 2.3 (Cauchy mean) A classic ezample of a random variable whose expected value does

not exist is a Cauchy random variable, that is, one with pdf

1 1

It is straightforward to check that [ fx(z)dz =1, but E|X| = co. Write

E|X| :/ Ja| 2d.%'=—/ %dm.
o T 1+ mJo 1+z

For any positive number M,

Mg 1 N 9
; 1+x2dx:§10g(1+$)\0 :ilog(l—i—M).

Thus,
1
E|X|= = lim log(l + M?) = oo
T M—oo

and EX does not exist.



Theorem 2.1 Let X be a random variable and let a, b, and c be constants. Then for any functions

g1(x) and go2(x) whose expectations exist,
a. E(agi(X)+bg2(X) 4+ ¢) =aFEq(X) +bEg(X) +c.
b. If g1(x) > 0 for all x, then Eg1(X) > 0.
c. If g1(x) = g2(x) for all z, then Egi(X) = Ega(X).
d. If a < gi(x) <b for all z, then a < Eg1(X) <b.

Example 2.4 (Minimizing distance) Find the value of b which minimizes the distance E(X —b)?.
E(X -b)?=E(X —EX + EX —b)?
=E(X - EX)? +(EX —b)?+2B((X — EX)(EX — b))
= EBE(X - EX)? + (EX —b)*
Hence E(X — b)? is minimized by choosing b = EX.

When evaluating expectations of nonlinear functions of X, we can proceed in one of two ways.

From the definition of Eg(X), we could directly calculate

Eg(X) = / " g(@) fx ().

But we could also find the pdf fy(y) of Y = g(X) and we would have

[e o]

Eg(X)=FEY =/ yfy (y)dy.

—0
3 Moments and moment generating functions
Definition 3.1 For each integer n, the n'* moment of X (or Fx(z)), ul,, is
w, =EX™.
The nt" central moment of X, iy, is
pn = E(X — p)",
where = p) = EX.

Theorem 3.1 The variance of a random variable X is its second central moment, VarX = E(X —

EX)2. The positive square root of VarX is the standard deviation of X.



