
However, if FX is constant on some interval, then F−1
X is not well defined by (2). The problem is

avoided by defining F−1
X (y) for 0 < y < 1 by

F−1
X (y) = inf{x : FX(x) ≥ y}. (3)

At the end point of the range of y, F−1
X (1) = ∞ if FX(x) < 1 for all x and, for any FX , F−1

X (0) =

−∞.

Theorem 1.4 (Probability integral transformation) Let X have continuous cdf FX(x) and define

the random variable Y as Y = FX(X). Then Y is uniformly distributed on (0, 1), that is, P (Y ≤
y) = y, 0 < y < 1.

Proof: For Y = FX(X) we have, for 0 < y < 1,

P (Y ≤ y) = P (FX(X) ≤ y)

= P (F−1
X [FX(X)] ≤ F−1

X (y))

= P (X ≤ F−1
X (y))

= FX(F−1
X (y)) = y.

At the endpoints we have P (Y ≤ y) = 1 for y ≥ 1 and P (Y ≤ y) = 0 for y ≤ 0, showing that Y

has a uniform distribution.

The reasoning behind the equality

P (F−1
X [FX(X)] ≤ F−1

X (y)) = P (X ≤ F−1
X (y))

is somewhat subtle and deserves additional attention. If FX is strictly increasing, then it is true that

F−1
X (FX (x)) = x. However, if FX is flat, it may be that F−1

X (FX (x)) 6= x. Then F−1
X (FX(x)) = x1,

since P (X ≤ x) = P (X ≤ x1) for any x ∈ [x1, x2]. The flat cdf denotes a region of 0 probability

P (x1 < X ≤ x) = FX(x) − FX(x1) = 0. �

2 Expected values

Definition 2.1 The expected value or mean of a random variable g(X), denoted by Eg(X), is

Eg(X) =











∫ ∞
−∞ g(x)fX(x)dx if X is continuous

∑

x∈X g(x)fX(x) =
∑

x∈X g(x)P (X = x) if X is discrete,

provided that the integral or sum exists. If E|g(X)| = ∞, we say that Eg(X) does not exist.
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Example 2.1 (Exponential mean) Suppose X has an exponential (λ) distribution, that is, it has

pdf given by

fX(x) =
1

λ
e−x/λ, 0 ≤ x < ∞, λ > 0.

Then EX is given by

EX =

∫ ∞

0
x

1

λ
e−x/λdx = λ.

Example 2.2 (Binomial mean) If X has a binomial distribution, its pmf is given by

P (X = x) =

(

n

x

)

px(1 − p)n−x, x = 0, 1, . . . , n,

where n is a positive integer 0 ≤ p ≤ 1, and for every fixed pair n and p the pmf sums to 1.

EX =

n
∑

x=0

x

(

n

x

)

px(1 − p)n−x =

n
∑

x=1

x

(

n

x

)

px(1 − p)n−x

=

n−1
∑

x=1

n

(

n − 1

x − 1

)

px(1 − p)n−x (x

(

n

x

)

= n

(

n − 1

x − 1

)

)

=

n−1
∑

y=0

n

(

n − 1

y

)

py+1(1 − p)n−(y+1) (substitute y = x − 1)

= np
n−1
∑

y=0

(

n − 1

y

)

py(1 − p)n−1−y

= np.

Example 2.3 (Cauchy mean) A classic example of a random variable whose expected value does

not exist is a Cauchy random variable, that is, one with pdf

fX(x) =
1

π

1

1 + x2
, −∞ < x < ∞.

It is straightforward to check that
∫ ∞
−∞ fX(x)dx = 1, but E|X| = ∞. Write

E|X| =

∫ ∞

−∞

|x|
π

1

1 + x2
dx =

2

π

∫ ∞

0

x

1 + x2
dx.

For any positive number M ,

∫ M

0

x

1 + x2
dx =

1

2
log(1 + x2)|M0 =

1

2
log(1 + M 2).

Thus,

E|X| =
1

π
lim

M→∞
log(1 + M 2) = ∞

and EX does not exist.
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Theorem 2.1 Let X be a random variable and let a, b, and c be constants. Then for any functions

g1(x) and g2(x) whose expectations exist,

a. E(ag1(X) + bg2(X) + c) = aEg1(X) + bEg2(X) + c.

b. If g1(x) ≥ 0 for all x, then Eg1(X) ≥ 0.

c. If g1(x) ≥ g2(x) for all x, then Eg1(X) ≥ Eg2(X).

d. If a ≤ g1(x) ≤ b for all x, then a ≤ Eg1(X) ≤ b.

Example 2.4 (Minimizing distance) Find the value of b which minimizes the distance E(X − b)2.

E(X − b)2 = E(X − EX + EX − b)2

= E(X − EX)2 + (EX − b)2 + 2E((X − EX)(EX − b))

= E(X − EX)2 + (EX − b)2.

Hence E(X − b)2 is minimized by choosing b = EX.

When evaluating expectations of nonlinear functions of X, we can proceed in one of two ways.

From the definition of Eg(X), we could directly calculate

Eg(X) =

∫ ∞

−∞
g(x)fX(x)dx.

But we could also find the pdf fY (y) of Y = g(X) and we would have

Eg(X) = EY =

∫ ∞

−∞
yfY (y)dy.

3 Moments and moment generating functions

Definition 3.1 For each integer n, the nth moment of X (or FX(x)), µ′
n, is

µ′
n = EXn.

The nth central moment of X, µn, is

µn = E(X − µ)n,

where µ = µ′
1 = EX.

Theorem 3.1 The variance of a random variable X is its second central moment, VarX = E(X−
EX)2. The positive square root of VarX is the standard deviation of X.
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