Transformations and Expectations

1 Distributions of Functions of a Random Variable

If X is a random variable with cdf $F_X(x)$, then any function of X, say g(X), is also a random variable. Sine Y = g(X) is a function of X, we can describe the probabilistic behavior of Y in terms of that of X. That is, for any set A,

$$P(Y \in A) = P(g(X) \in A),$$

Showing that the distribution of Y depends on the function F_X and g.

Formally, if we write y = g(x), the function g(x) defines a mapping from the original sample space of X, \mathcal{X} , to a new sample space, \mathcal{Y} , the sample space of the random variable Y. That is,

$$g(x): \mathcal{X} \longrightarrow \mathcal{Y}.$$

Conveniently, we can write

$$\mathcal{X} = \{ x : f_X(x) > 0 \} \quad \text{and} \quad \mathcal{Y} = \{ y : y = g(x) \text{ for some } x \in CX \}.$$
(1)

The pdf of X is positive only on the set \mathcal{X} and is 0 elsewhere. Such a set is called the support set or support of a distribution. We associate with g an inverse mapping, denoted by g^{-1} , which is a mapping from subsets of \mathcal{Y} to subsets of \mathcal{X} , and is defined by

$$g^{-1}(A) = \{x \in \mathcal{X} : g(x) \in A\}.$$

It is possible for A to be a point set, say $A = \{y\}$. Then

$$g^{-1}(\{y\}) = \{x \in \mathcal{X} : g(x) = y\}.$$

In this case, we often write $g^{-1}(y)$ instead of $g^{-1}(\{y\})$.

The probability distribution of Y can be defined as follows. For any set $A \subset \mathcal{Y}$,

$$P(Y \subset A) = P(g(X) \subset A) = P(\{x \in \mathcal{X} : g(x) \in A\}) = P(X \in g^{-1}(A)).$$

It is straightforward to show that this probability function satisfies the Kolmogorov Axioms.

If X is a discrete random variable, then \mathcal{X} is countable. The sample space for Y = g(X) is $\mathcal{Y} = \{y : y = g(x), x \in \mathcal{X}\}$, which is also a countable set. Thus, Y is also a discrete random variable. The pmf for Y is

$$f_Y(y) = P(Y = y) = \sum_{x \in g^{-1}(y)} P(X = x)$$
$$= \sum_{x \in g^{-1}(y)} f_X(x), \quad \text{for } y \in \mathcal{Y}$$

and $f_Y(y) = 0$ for $y \notin \mathcal{Y}$. In this case, finding the pmf of Y involves simply identifying $g^{-1}(y)$, for each $y \in \mathcal{Y}$, and summing the appropriate probabilities.

Example 1.1 (Binomial transformation) A discrete random variable X has a binomial distribution if its pmf is of the form

$$f_X(x) = P(X = x) = {\binom{n}{x}} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n$$

where n is a positive integer and $0 \le p \le 1$. Consider the random variable Y = g(X), where g(x) = n - x. Thus, $g^{-1}(y)$ is the single point x = n - y, and

$$f_Y(y) = \sum_{x \in g^{-1}(y)} f_X(x) = f_X(n-y)$$

= $\binom{n}{n-y} p^{n-y} (1-p)^{n-(n-y)}$
= $\binom{n}{y} (1-p)^y p^{n-y}.$

Thus, we see that Y also has a binomial distribution, but with parameters n and 1 - p.

If X and Y are continuous random variables, the cdf of Y = g(X) is

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$
$$= P(\{x \in \mathcal{X} : g(x) \le y\}) = \int_{\{x \in \mathcal{X} : g(x) \le y\}} f_X(x) dx$$

Sometimes there may be difficulty in identifying $\{x \in \mathcal{X} : g(x) \leq y\}$ and carrying out the integration of $F_X(x)$ over this region.

Example 1.2 (Uniform transformation) Suppose X has a uniform distribution on the interval $(0, 2\pi)$, that is,

$$f_X(x) = \begin{cases} 1/(2\pi) & 0 < x < 2\pi \\ 0 & otherwise. \end{cases}$$

Consider $Y = \sin^2(X)$. Then

$$P(Y \le y) = P(X \le x_1) + P(x_2 \le X \le x_3) + P(X \ge x_4)$$
$$= 2P(X \le x_1) + 2P(x_2 \le X \le \pi),$$

where x_1 and x_2 are the two solutions to

$$\sin^2(x) = y, \quad 0 < x < \pi.$$

Thus, even though this example dealt with a seemingly simple situation, the cdf of Y was not simple.

It is easiest to deal with functions g(x) that are monotone, that is, those that satisfy either

 $u > v \Rightarrow g(u) > g(v)$ (increasing) or $u < v \Rightarrow g(u) > g(v)$ (decreasing).

If g is monotone, then g^{-1} is single-valued; that is, $g^{-1}(y) = x$ if and only if y = g(x). If g is increasing, this implies that

$$\{x \in \mathcal{X} : g(x) \le y\} = \{x \in \mathcal{X} : x \le g^{-1}(y)\}.$$

If g is decreasing, this implies that

$$\{x \in \mathcal{X} : g(x) \le y\} = \{x \in \mathcal{X} : x \ge g^{-1}(y)\}.$$

If g(x) is increasing, we can write

$$F_Y(y) = \int_{\{x \in \mathcal{X} : x \le g^{-1}(y)\}} f_X(x) dx = \int_{-\infty}^{g^{-1}(y)} f_X(x) dx = F_X(g^{-1}(y)).$$

If g(x) is decreasing, we have

$$F_Y(y) = \int_{g^{-1}(y)}^{\infty} f_X(x) dx = 1 - F_X(g^{-1}(y))$$

The continuity of X is used to obtain the second equality. We summarize these results in the following theorem.

Theorem 1.1 Let X have cdf $F_X(x)$, let Y = g(X), and let \mathcal{X} and \mathcal{Y} be defined as in (1).

- a. If g is an increasing function on \mathcal{X} , $F_Y(y) = F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$.
- b. If g is a decreasing function on \mathcal{X} and X is a continuous random variable, $F_Y(y) = 1 F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$.

Example 1.3 (Uniform-exponential relationship-I) Suppose $X \sim f_X(x) = 1$ if 0 < x < 1 and 0 otherwise, the uniform(0,1) distribution. It is straightforward to check that $F_X(x) = x, 0 < x < 1$. We now make the transformation $Y = g(X) = -\log(X)$. Since

$$\frac{d}{dx}g(x) = -\frac{1}{x} < 0, \quad for \ 0 < x < 1,$$

g(x) is a decreasing function. Therefore, for y > 0,

$$F_Y(y) = 1 - F_X(g^{-1}(y)) = 1 - F_X(e^{-y}) = 1 - e^{-y}.$$

Of course, $F_Y(y) = 0$ for $y \leq 0$.

If the pdf of Y is continuous, it can be obtained by differentiating the cdf.

Theorem 1.2 Let X have pdf $f_X(x)$ and Y = g(X), where g is a monotone function. Let X and \mathcal{Y} be define by (1). Suppose that $f_X(x)$ is continuous on \mathcal{X} and that $g^{-1}(y)$ has a continuous derivative on \mathcal{Y} . Then the pdf of Y is given by

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) | \frac{d}{dy} g^{-1}(y) | & y \in \mathcal{Y} \\ 0 & otherwise. \end{cases}$$

PROOF: From Theorem 1.1 we have, by the chain rule,

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \begin{cases} f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y) & \text{if } g \text{ is increasing} \\ -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y) & \text{if } g \text{ is decreasing} \end{cases}$$

Example 1.4 (Inverted gamma pdf) Let $f_X(x)$ be the gamma pdf

$$f(x) = \frac{1}{(n-1)!\beta^n} x^{n-1} e^{-x/\beta}, \quad 0 < x < \infty,$$

where β is a positive constant and n is a positive integer. If we let y = g(x) = 1/x, then $g^{-1}(y) = 1/y$ and $\frac{d}{dy}g^{-1}(y) = -1/y^2$. Applying the above theorem, for $0 < y < \infty$, we get

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

= $\frac{1}{(n-1)!\beta^n} \left(\frac{1}{y}\right)^{n-1} e^{-1/(\beta y)} \frac{1}{y^2}$
= $\frac{1}{(n-1)!\beta^n} \left(\frac{1}{y}\right)^{n+1} e^{-1/(\beta y)},$

a special case of a pdf known as the inverted gamma pdf.

Theorem 1.3 Let X have pdf $F_X(x)$, let Y = g(X), and define the sample space X as in (1). Suppose there exists a partition, A_0, A_1, \ldots, A_k , of X such that $P(X \in A_0) = 0$ and $f_X(x)$ is continuous on each A_i . Further, suppose there exist functions $g_1(x), \ldots, g_k(x)$, defined on A_1, \ldots, A_k , respectively, satisfying

- i. $g(x) = g_i(x)$, for $x \in A_i$,
- ii. $g_i(x)$ is monotone on A_i ,
- iii. the set $\mathcal{Y} = \{y : y = g_i(x) \text{ for some } x \in A_i\}$ is the same for each $i = 1, \dots, k$, and iv. $g_i^{-1}(y)$ has a continuous derivative on \mathcal{Y} , for each $i = 1, \dots, k$.

Then

$$f_Y(y) = \begin{cases} \sum_{i=1}^k f_X(g_i^{-1}(y)) |\frac{d}{dy} g_i^{-1}(y)| & y \in \mathcal{Y} \\ 0 & otherwise \end{cases}$$

Example 1.5 (Normal-Chi squared relationship) Let X have the standard normal distribution

$$f_X(x) = \frac{1}{2\pi} e^{-x^2/2}, \quad -\infty < x < \infty.$$

Consider $Y = X^2$. The function $g(x) = x^2$ is monotone on $(-\infty, 0)$ and $(0, \infty)$. The set $\mathcal{Y} = (0, \infty)$. Applying Theorem 1.3, we take

$$A_0 = \{0\};$$

$$A_1 = (-\infty, 0), \quad g_1(x) = x^2, \quad g_1^{-1}(y) = -\sqrt{y};$$

$$A_2 = (0, \infty), \quad g_2(x) = x^2, \quad g_2^{-1}(y) = \sqrt{y}.$$

The pdf of Y is

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-(-\sqrt{y})^2/2} |-\frac{1}{2\sqrt{y}}| + \frac{1}{\sqrt{2\pi}} e^{-(\sqrt{y})^2/2} |\frac{1}{2\sqrt{y}}|$$
$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y}} e^{-y/2}, \quad 0 < y < \infty.$$

So Y is a chi-squared random variable with 1 degree of freedom.

Let F_X^{-1} denote the inverse of the cdf F_X . If F_X is strictly increasing, then F_X^{-1} is well defined by

$$F_X^{-1}(y) = x \Leftrightarrow F_X(x) = y.$$
⁽²⁾

However, if F_X is constant on some interval, then F_X^{-1} is not well defined by (2). The problem is avoided by defining $F_X^{-1}(y)$ for 0 < y < 1 by

$$F_X^{-1}(y) = \inf\{x : F_X(x) \ge y\}.$$
(3)

At the end point of the range of y, $F_X^{-1}(1) = \infty$ if $F_X(x) < 1$ for all x and, for any F_X , $F_X^{-1}(0) = -\infty$.

Theorem 1.4 (Probability integral transformation) Let X have continuous $cdf F_X(x)$ and define the random variable Y as $Y = F_X(X)$. Then Y is uniformly distributed on (0,1), that is, $P(Y \le y) = y, 0 < y < 1$.

PROOF: For $Y = F_X(X)$ we have, for 0 < y < 1,

$$P(Y \le y) = P(F_X(X) \le y)$$

= $P(F_X^{-1}[F_X(X)] \le F_X^{-1}(y))$
= $P(X \le F_X^{-1}(y))$
= $F_X(F_X^{-1}(y)) = y.$

At the endpoints we have $P(Y \le y) = 1$ for $y \ge 1$ and $P(Y \le y) = 0$ for $y \le 0$, showing that Y has a uniform distribution.

The reasoning behind the equality

$$P(F_X^{-1}[F_X(X)] \le F_X^{-1}(y)) = P(X \le F_X^{-1}(y))$$

is somewhat subtle and deserves additional attention. If F_X is strictly increasing, then it is true that $F_X^{-1}(F_X(x)) = x$. However, if F_X is flat, it may be that $F_X^{-1}(F_X(x)) \neq x$. Then $F_X^{-1}(F_X(x)) = x_1$, since $P(X \leq x) = P(X \leq x_1)$ for any $x \in [x_1, x_2]$. The flat cdf denotes a region of 0 probability $P(x_1 < X \leq x) = F_X(x) - F_X(x_1) = 0$. \Box

2 Expected values

Definition 2.1 The expected value or mean of a random variable g(X), denoted by Eg(X), is

$$Eg(X) = \begin{cases} \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } X \text{ is continuous} \\ \sum_{x \in \mathcal{X}} g(x) f_X(x) = \sum_{x \in \mathcal{X}} g(x) P(X = x) & \text{if } X \text{ is discrete,} \end{cases}$$

provided that the integral or sum exists. If $E|g(X)| = \infty$, we say that Eg(X) does not exist.