
Transformations and Expectations

1 Distributions of Functions of a Random Variable

If X is a random variable with cdf FX(x), then any function of X, say g(X), is also a random

variable. Sine Y = g(X) is a function of X, we can describe the probabilistic behavior of Y in

terms of that of X. That is, for any set A,

P (Y ∈ A) = P (g(X) ∈ A),

Showing that the distribution of Y depends on the function FX and g.

Formally, if we write y = g(x), the function g(x) defines a mapping from the original sample

space of X, X , to a new sample space, Y, the sample space of the random variable Y . That is,

g(x) : X −→ Y.

Conveniently, we can write

X = {x : fX(x) > 0} and Y = {y : y = g(x) for some x ∈ CX}. (1)

The pdf of X is positive only on the set X and is 0 elsewhere. Such a set is called the support set

or support of a distribution. We associate with g an inverse mapping, denoted by g−1, which is a

mapping from subsets of Y to subsets of X , and is defined by

g−1(A) = {x ∈ X : g(x) ∈ A}.

It is possible for A to be a point set, say A = {y}. Then

g−1({y}) = {x ∈ X : g(x) = y}.

In this case, we often write g−1(y) instead of g−1({y}).
The probability distribution of Y can be defined as follows. For any set A ⊂ Y,

P (Y ⊂ A) = P (g(X) ⊂ A) = P ({x ∈ X : g(x) ∈ A}) = P (X ∈ g−1(A)).
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It is straightforward to show that this probability function satisfies the Kolmogorov Axioms.

If X is a discrete random variable, then X is countable. The sample space for Y = g(X) is

Y = {y : y = g(x), x ∈ X}, which is also a countable set. Thus, Y is also a discrete random

variable. The pmf for Y is

fY (y) = P (Y = y) =
∑

x∈g−1(y)

P (X = x)

=
∑

x∈g−1(y)

fX(x), for y ∈ Y

and fY (y) = 0 for y /∈ Y. In this case, finding the pmf of Y involves simply identifying g−1(y), for

each y ∈ Y, and summing the appropriate probabilities.

Example 1.1 (Binomial transformation) A discrete random variable X has a binomial distribution

if its pmf is of the form

fX(x) = P (X = x) =

(

n

x

)

px(1 − p)n−x, x = 0, 1, . . . , n,

where n is a positive integer and 0 ≤ p ≤ 1. Consider the random variable Y = g(X), where

g(x) = n − x. Thus, g−1(y) is the single point x = n − y, and

fY (y) =
∑

x∈g−1(y)

fX(x) = fX(n − y)

=

(

n

n − y

)

pn−y(1 − p)n−(n−y)

=

(

n

y

)

(1 − p)ypn−y.

Thus, we see that Y also has a binomial distribution, but with parameters n and 1 − p.

If X and Y are continuous random variables, the cdf of Y = g(X) is

FY (y) = P (Y ≤ y) = P (g(X) ≤ y)

= P ({x ∈ X : g(x) ≤ y}) =

∫

{x∈X :g(x)≤y}
fX(x)dx.

Sometimes there may be difficulty in identifying {x ∈ X : g(x) ≤ y} and carrying out the integration

of FX(x) over this region.

Example 1.2 (Uniform transformation) Suppose X has a uniform distribution on the interval

(0, 2π), that is,

fX(x) =











1/(2π) 0 < x < 2π

0 otherwise.

2



Consider Y = sin2(X). Then

P (Y ≤ y) = P (X ≤ x1) + P (x2 ≤ X ≤ x3) + P (X ≥ x4)

= 2P (X ≤ x1) + 2P (x2 ≤ X ≤ π),

where x1 and x2 are the two solutions to

sin2(x) = y, 0 < x < π.

Thus, even though this example dealt with a seemingly simple situation, the cdf of Y was not simple.

It is easiest to deal with functions g(x) that are monotone, that is, those that satisfy either

u > v ⇒ g(u) > g(v) (increasing) or u < v ⇒ g(u) > g(v) (decreasing).

If g is monotone, then g−1 is single-valued; that is, g−1(y) = x if and only if y = g(x). If g is

increasing, this implies that

{x ∈ X : g(x) ≤ y} = {x ∈ X : x ≤ g−1(y)}.

If g is decreasing, this implies that

{x ∈ X : g(x) ≤ y} = {x ∈ X : x ≥ g−1(y)}.

If g(x) is increasing, we can write

FY (y) =

∫

{x∈X :x≤g−1(y)}
fX(x)dx =

∫ g−1(y)

−∞
fX(x)dx = FX(g−1(y)).

If g(x) is decreasing, we have

FY (y) =

∫ ∞

g−1(y)
fX(x)dx = 1 − FX(g−1(y)).

The continuity of X is used to obtain the second equality. We summarize these results in the

following theorem.

Theorem 1.1 Let X have cdf FX(x), let Y = g(X), and let X and Y be defined as in (1).

a. If g is an increasing function on X , FY (y) = FX(g−1(y)) for y ∈ Y.

b. If g is a decreasing function on X and X is a continuous random variable, FY (y) = 1 −
FX(g−1(y)) for y ∈ Y.

3



Example 1.3 (Uniform-exponential relationship-I) Suppose X ∼ fX(x) = 1 if 0 < x < 1 and 0

otherwise, the uniform(0,1) distribution. It is straightforward to check that FX(x) = x, 0 < x < 1.

We now make the transformation Y = g(X) = − log(X). Since

d

dx
g(x) = − 1

x
< 0, for 0 < x < 1,

g(x) is a decreasing function. Therefore, for y > 0,

FY (y) = 1 − FX(g−1(y)) = 1 − FX(e−y) = 1 − e−y.

Of course, FY (y) = 0 for y ≤ 0.

If the pdf of Y is continuous, it can be obtained by differentiating the cdf.

Theorem 1.2 Let X have pdf fX(x) and Y = g(X), where g is a monotone function. Let X
and Y be define by (1). Suppose that fX(x) is continuous on X and that g−1(y) has a continuous

derivative on Y. Then the pdf of Y is given by

fY (y) =











fX(g−1(y))| d
dy g−1(y)| y ∈ Y

0 otherwise.

Proof: From Theorem 1.1 we have, by the chain rule,

fY (y) =
d

dy
FY (y) =











fX(g−1(y)) d
dy g−1(y) if g is increasing

−fX(g−1(y)) d
dy g−1(y) if g is decreasing.

�

Example 1.4 (Inverted gamma pdf) Let fX(x) be the gamma pdf

f(x) =
1

(n − 1)!βn
xn−1e−x/β , 0 < x < ∞,

where β is a positive constant and n is a positive integer. If we let y = g(x) = 1/x, then g−1(y) =

1/y and d
dyg−1(y) = −1/y2. Applying the above theorem, for 0 < y < ∞, we get

fY (y) = fX(g−1(y))| d

dy
g−1(y)|

=
1

(n − 1)!βn

(1

y

)n−1
e−1/(βy) 1

y2

=
1

(n − 1)!βn

(1

y

)n+1
e−1/(βy),

a special case of a pdf known as the inverted gamma pdf.
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Theorem 1.3 Let X have pdf FX(x), let Y = g(X), and define the sample space X as in (1).

Suppose there exists a partition, A0, A1, . . . , Ak, of X such that P (X ∈ A0) = 0 and fX(x) is con-

tinuous on each Ai. Further, suppose there exist functions g1(x), . . . , gk(x), defined on A1, . . . , Ak,

respectively, satisfying

i. g(x) = gi(x), for x ∈ Ai,

ii. gi(x) is monotone on Ai,

iii. the set Y = {y : y = gi(x) for some x ∈ Ai} is the same for each i = 1, . . . , k, and

iv. g−1
i (y) has a continuous derivative on Y, for each i = 1, . . . , k.

Then

fY (y) =











∑k
i=1 fX(g−1

i (y))| d
dy g−1

i (y)| y ∈ Y

0 otherwise.

Example 1.5 (Normal-Chi squared relationship) Let X have the standard normal distribution

fX(x) =
1

2π
e−x2/2, −∞ < x < ∞.

Consider Y = X2. The function g(x) = x2 is monotone on (−∞, 0) and (0,∞). The set Y =

(0,∞). Applying Theorem 1.3, we take

A0 = {0};

A1 = (−∞, 0), g1(x) = x2, g−1
1 (y) = −√

y;

A2 = (0,∞), g2(x) = x2, g−1
2 (y) =

√
y.

The pdf of Y is

fY (y) =
1√
2π

e−(−√
y)2/2| − 1

2
√

y
| + 1√

2π
e−(

√
y)2/2| 1

2
√

y
|

=
1√
2π

1√
y
e−y/2, 0 < y < ∞.

So Y is a chi-squared random variable with 1 degree of freedom.

Let F−1
X denote the inverse of the cdf FX . If FX is strictly increasing, then F−1

X is well defined

by

F−1
X (y) = x ⇔ FX(x) = y. (2)
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However, if FX is constant on some interval, then F−1
X is not well defined by (2). The problem is

avoided by defining F−1
X (y) for 0 < y < 1 by

F−1
X (y) = inf{x : FX(x) ≥ y}. (3)

At the end point of the range of y, F−1
X (1) = ∞ if FX(x) < 1 for all x and, for any FX , F−1

X (0) =

−∞.

Theorem 1.4 (Probability integral transformation) Let X have continuous cdf FX(x) and define

the random variable Y as Y = FX(X). Then Y is uniformly distributed on (0, 1), that is, P (Y ≤
y) = y, 0 < y < 1.

Proof: For Y = FX(X) we have, for 0 < y < 1,

P (Y ≤ y) = P (FX(X) ≤ y)

= P (F−1
X [FX(X)] ≤ F−1

X (y))

= P (X ≤ F−1
X (y))

= FX(F−1
X (y)) = y.

At the endpoints we have P (Y ≤ y) = 1 for y ≥ 1 and P (Y ≤ y) = 0 for y ≤ 0, showing that Y

has a uniform distribution.

The reasoning behind the equality

P (F−1
X [FX(X)] ≤ F−1

X (y)) = P (X ≤ F−1
X (y))

is somewhat subtle and deserves additional attention. If FX is strictly increasing, then it is true that

F−1
X (FX (x)) = x. However, if FX is flat, it may be that F−1

X (FX (x)) 6= x. Then F−1
X (FX(x)) = x1,

since P (X ≤ x) = P (X ≤ x1) for any x ∈ [x1, x2]. The flat cdf denotes a region of 0 probability

P (x1 < X ≤ x) = FX(x) − FX(x1) = 0. �

2 Expected values

Definition 2.1 The expected value or mean of a random variable g(X), denoted by Eg(X), is

Eg(X) =











∫ ∞
−∞ g(x)fX(x)dx if X is continuous

∑

x∈X g(x)fX(x) =
∑

x∈X g(x)P (X = x) if X is discrete,

provided that the integral or sum exists. If E|g(X)| = ∞, we say that Eg(X) does not exist.
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