Transformations and Expectations

1 Distributions of Functions of a Random Variable

If X is a random variable with cdf Fx(x), then any function of X, say g(X), is also a random
variable. Sine Y = ¢(X) is a function of X, we can describe the probabilistic behavior of Y in

terms of that of X. That is, for any set A,
P(Y € 4) = P(g(X) € A),

Showing that the distribution of Y depends on the function F'x and g.
Formally, if we write y = g(x), the function g(x) defines a mapping from the original sample

space of X, X, to a new sample space, ), the sample space of the random variable Y. That is,
g(z) : X — Y.
Conveniently, we can write
X ={z: fx(z) >0} and Y= {y:y=g(z) for some z € CX}. (1)

The pdf of X is positive only on the set X and is 0 elsewhere. Such a set is called the support set

1

or support of a distribution. We associate with ¢ an inverse mapping, denoted by ¢, which is a

mapping from subsets of ) to subsets of X, and is defined by

g H(A) ={z € X :g(z) € A},
It is possible for A to be a point set, say A = {y}. Then

g ({y}) = {z € X : g(x) = y}.

In this case, we often write g~!(y) instead of g~ ({y}).
The probability distribution of Y can be defined as follows. For any set A C ),

P(Y C A) = P(g(X) C A) = P({z € X : g(x) € A}) = P(X € g *(A)).



It is straightforward to show that this probability function satisfies the Kolmogorov Axioms.
If X is a discrete random variable, then X is countable. The sample space for Y = g(X) is
Y ={y:y=g(x),r € X}, which is also a countable set. Thus, YV is also a discrete random

variable. The pmf for Y is

= Z fx(x), forye)

z€g~(y)
and fy(y) = 0 for y ¢ V. In this case, finding the pmf of Y involves simply identifying g ~*(y), for

each y € ), and summing the appropriate probabilities.

Example 1.1 (Binomial transformation) A discrete random variable X has a binomial distribution
if its pmf is of the form

n

fx(@x)=P(X =x2)= < )px(l -p)"* x=0,1,...,n,

x
where n is a positive integer and 0 < p < 1. Consider the random variable Y = g(X), where
g(x) =n—x. Thus, g~ (y) is the single point x = n —y, and

Ky = > fx@) =fxn—y)

z€g~1(y)

R I——

n—y

(Z) (L—=p)p"".

Thus, we see that Y also has a binomial distribution, but with parameters n and 1 — p.

If X and Y are continuous random variables, the cdf of Y = g(X) is
Fy(y) = P(Y <y) = P(9(X) <)

Pz e gl <yh = | fx(@)da.

{zeX:g(x)<y}
Sometimes there may be difficulty in identifying {x € X : g(x) < y} and carrying out the integration

of Fx(x) over this region.

Example 1.2 (Uniform transformation) Suppose X has a uniform distribution on the interval
(0,27), that is,

1/(27 O<x<2m
R A

0 otherwise.



Consider Y = sin?(X). Then

P(ng)ZP(Xle)—i-P(l'g§X§$3)+P(XZ$4)

=2P(X <z1)+2P(ze < X <),
where x1 and xo are the two solutions to
sinf(z) =y, O0<z<m.
Thus, even though this example dealt with a seemingly simple situation, the cdf of Y was not simple.
It is easiest to deal with functions g(x) that are monotone, that is, those that satisfy either

u>v = g(u) > g(v) (increasing) or u < v = g(u) > g(v) (decreasing).
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If g is monotone, then g~ is single-valued; that is, g~ '(y) = z if and only if y = g(z). If g is

increasing, this implies that
{reX ga)<yl={reXx:z<g'(y}
If ¢ is decreasing, this implies that
{reX:glx)<yt={reX:z>g"(y)}

If g(z) is increasing, we can write

g~ (y)
Fy(y) = nmmzf fx(@)de = Fx (g~ ).

/{xex:xgg—l<y)} —o

If g(z) is decreasing, we have

B [ ax@e =1 P w)
9y

The continuity of X is used to obtain the second equality. We summarize these results in the

following theorem.
Theorem 1.1 Let X have cdf Fx(z), let Y = g(X), and let X and Y be defined as in (1).
a. If g is an increasing function on X, Fy(y) = Fx (g '(y)) fory € V.

b. If g is a decreasing function on X and X is a continuous random variable, Fy(y) = 1 —

Fx(g7'(y)) forye .



Example 1.3 (Uniform-exponential relationship-1) Suppose X ~ fx(z) =1if0 <z <1 and 0
otherwise, the uniform(0,1) distribution. It is straightforward to check that Fx(x) = 2,0 < z < 1.

We now make the transformation Y = g(X) = —log(X). Since

d 1
—g(r) =—=<0, for0O<z<l,
dx x

g(x) is a decreasing function. Therefore, for y >0,
Fy(y)=1-Fx(g ' (y) =1-Fx(e¥)=1-e7".
Of course, Fy(y) =0 for y <O0.
If the pdf of Y is continuous, it can be obtained by differentiating the cdf.

Theorem 1.2 Let X have pdf fx(z) and Y = g(X), where g is a monotone function. Let X
and Y be define by (1). Suppose that fx(x) is continuous on X and that g~'(y) has a continuous
derivative on Y. Then the pdf of Y is given by

-1 d -1
fog)— 4 XTI WL v e

0 otherwise.

PrOOF: From Theorem 1.1 we have, by the chain rule,

d fX(Q_l(y))dig_l(y) if ¢ is increasing
fr(y) = @Fy(y) = Y
—fX(g_l(?/))d%g_l(y) if g is decreasing,.

O

Example 1.4 (Inverted gamma pdf) Let fx(z) be the gamma pdf

1 xn—le—z/ﬂ

(n— D15 |

where 3 is a positive constant and n is a positive integer. If we let y = g(x) = 1/z, then g~ (y) =

fz) =

0 <2< oo,

1/y and %gil(y) = —1/y?. Applying the above theorem, for 0 <y < oo, we get

d
fr(y) = fx(g’l(y))!@g’l(y)!
1 1ono1 _ 1
")
1 Tin+1 _
- e,

a special case of a pdf known as the inverted gamma pdf.



Theorem 1.3 Let X have pdf Fx(x), let Y = g(X), and define the sample space X as in (1).
Suppose there exists a partition, Ag, A1,...,Ag, of X such that P(X € Ag) =0 and fx(x) is con-
tinuous on each A;. Further, suppose there exist functions g1(x), ..., gx(x), defined on Ay,..., A,

respectively, satisfying
i. g(x) = gi(z), for v € A;,
it. g;(x) is monotone on A;,
iii. the set Y ={y :y = gi;(x) for some x € A;} is the same for each i =1,... k, and
. g;l(y) has a continuous derivative on Y, for each i =1,...,k.

Then
ST W) Ee W) yey

0 otherwise.

fy(y) =

Example 1.5 (Normal-Chi squared relationship) Let X have the standard normal distribution

fx(z) = 2—6"”2/2, —00 < < 00.
7r

Consider Y = X2%. The function g(x) = 2% is monotone on (—00,0) and (0,00). The set Y =
(0,00). Applying Theorem 1.3, we take
Ap = {0};
Ar=(-00,0), gi(@) =2 g7 (y) = —V¥;
Ay =(0,00), ga(x) =2% g3 (y) = V.
The pdf of Y is

1 2 1 1 2 1
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1 1
V2 0<y< oo,

= E%e ,

So 'Y is a chi-squared random variable with 1 degree of freedom.

Let Fy 1 denote the inverse of the cdf Fx. If Fy is strictly increasing, then Fy s well defined
by
Fl'(y) =z & Fx(x) =y (2)



However, if F'x is constant on some interval, then F'y 1is not well defined by (2). The problem is
avoided by defining F)}l(y) for 0 <y <1by

Fy'(y) = inf{z : Fx(z) >y}, (3)
At the end point of the range of y, Fgl(l) = o0 if Fx(x) < 1 for all z and, for any Fl, F)?l(()) =

—0Q.

Theorem 1.4 (Probability integral transformation) Let X have continuous cdf Fx(x) and define
the random variable Y as Y = Fx(X). Then Y is uniformly distributed on (0,1), that is, P(Y <
y) =y, 0<y <1

PRrROOF: For Y = Fx(X) we have, for 0 < y < 1,

PY <y) = P(Fx(X) <v)
(Fx'[Fx(X)] < Fx'(y)
(X < Fy'(y)
Fx(Fx'(y) =v.

At the endpoints we have P(Y < y) =1for y > 1 and P(Y < y) = 0 for y < 0, showing that YV’

P
P

has a uniform distribution.

The reasoning behind the equality
P(Fy'[Fx(X)] < Fx'(y)) = P(X < Fx'(y))

is somewhat subtle and deserves additional attention. If F'x is strictly increasing, then it is true that
Fy'(Fx(z)) = . However, if Fx is flat, it may be that Fy!(Fx(z)) # 2. Then Fy'(Fx(z)) = 1,
since P(X < z) = P(X < x) for any = € [z1,22]. The flat cdf denotes a region of 0 probability
Pz <X <z)=Fx(z)— Fx(z1)=0.0

2 Expected values

Definition 2.1 The expected value or mean of a random variable g(X), denoted by Eg(X), is

ffooo 9() fx (z)dx if X is continuous

Yorex 9@ fx(x) = cxr9(@)P(X =x) if X is discrete,

Eg(X) =

provided that the integral or sum exists. If E|g(X)| = oo, we say that Eg(X) does not exist.



