1.4 Random Variable

Motivation example In an opinion poll, we might decide to ask 50 people whether they agree or disagree with a certain issue. If we record a “1” for agree and “0” for disagree, the sample space for this experiment has 2^{50} elements. If we define a variable $X =$ number of 1s recorded out of 50, we have captured the essence of the problem. Note that the sample space of X is the set of integers $\{1, 2, \ldots, 50\}$ and is much easier to deal with than the original sample space.

In defining the quantity X, we have defined a mapping (a function) from the original sample space to a new sample space, usually a set of real numbers. In general, we have the following definition.

Definition of Random Variable A random variable is a function from a sample space S into the real numbers.

Example 1.4.2 (Random variables)

In some experiments random variables are implicitly used; some examples are these.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Random variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toss two dice</td>
<td>$X =$ sum of the numbers</td>
</tr>
<tr>
<td>Toss a coin 25 times</td>
<td>$X =$ number of heads in 25 tosses</td>
</tr>
<tr>
<td>Apply different amounts of fertilizer to corn plants</td>
<td>$X =$ yield/acre</td>
</tr>
</tbody>
</table>

Suppose we have a sample space

$$S = \{s_1, \ldots, s_n\}$$

with a probability function P and we define a random variable X with range $\mathcal{X} = \{x_1, \ldots, x_m\}$. We can define a probability function P_X on \mathcal{X} in the following way. We will observe $X = x_i$ if and only if the outcome of the random experiment is an $s_j \in S$ such that $X(s_j) = x_i$. Thus,

$$P_X(X = x_i) = P(\{s_j \in S : X(s_j) = x_i\}). \quad (1)$$
Note \(P_X \) is an induced probability function on \(\mathcal{X} \), defined in terms of the original function \(P \). Later, we will simply write \(P_X(X = x_i) = P(X = x_i) \).

Fact The induced probability function defined in (1) defines a legitimate probability function in that it satisfies the Kolmogorov Axioms.

Proof: \(C \) is finite. Therefore \(\mathcal{B} \) is the set of all subsets of \(\mathcal{X} \). We must verify each of the three properties of the axioms.

1. If \(A \in \mathcal{B} \) then \(P_X(A) = P(\cup_{x_i \in A} \{s_j \in S : X(s_j) = x_i\}) \geq 0 \) since \(P \) is a probability function.

2. \(P_X(\mathcal{X}) = P(\cup_{x_i} \{s_j \in S : X(s_j) = x_i\}) = P(S) = 1. \)

3. If \(A_1, A_2, \ldots \in \mathcal{B} \) and pairwise disjoint then

\[
P_X(\bigcup_{k=1}^{\infty} A_k) = P(\bigcup_{k=1}^{\infty} \{s_j \in S : X(s_j) = x_i\}) = \sum_{k=1}^{\infty} P_X(A_k),
\]

where the second inequality follows from the fact \(P \) is a probability function. \(\square \)

A note on notation: Random variables will always be denoted with uppercase letters and the realized values of the variable will be denoted by the corresponding lowercase letters. Thus, the random variable \(X \) can take the value \(x \).

Example 1.4.3 (Three coin tosses-II) Consider again the experiment of tossing a fair coin three times independently. Define the random variable \(X \) to be the number of heads obtained in the three tosses. A complete enumeration of the value of \(X \) for each point in the sample space is

<table>
<thead>
<tr>
<th>s</th>
<th>HHH</th>
<th>HHT</th>
<th>HTH</th>
<th>THH</th>
<th>TTH</th>
<th>THT</th>
<th>HTT</th>
<th>TTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(s)</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The range for the random variable \(X \) is \(\mathcal{X} = \{0, 1, 2, 3\} \). Assuming that all eight points in \(S \) have probability \(\frac{1}{8} \), by simply counting in the above display we see that the induced probability function on \(\mathcal{X} \) is given by
The previous illustrations had both a finite S and finite \mathcal{X}, and the definition of P_X was straightforward. Such is also the case if \mathcal{X} is countable. If \mathcal{X} is uncountable, we define the induced probability function, P_X, in a manner similar to (1). For any set $A \subseteq \mathcal{X}$,

$$P_X(X \in A) = P\left\{s \in S : X(s) \in A\right\}.$$ \hfill (2)

This does define a legitimate probability function for which the Kolmogorov Axioms can be verified.

Distribution Functions

Definition of Distribution The cumulative distribution function (cdf) of a random variable X, denoted by $F_X(x)$, is defined by

$$F_X(x) = P_X(X \leq x), \quad \text{for all } x.$$

Example 1.5.2 (Tossing three coins) Consider the experiment of tossing three fair coins, and let $X =$number of heads observed. The cdf of X is

$$F_X(x) = \begin{cases} 0 & \text{if } -\infty < x < 0 \\ \frac{1}{8} & \text{if } 0 \leq x < 1 \\ \frac{1}{2} & \text{if } 1 \leq x < 2 \\ \frac{7}{8} & \text{if } 2 \leq x < 3 \\ 1 & \text{if } 3 \leq x < \infty. \end{cases}$$
Remark:

1. F_X is defined for all values of x, not just those in $\mathcal{X} = \{0, 1, 2, 3\}$. Thus, for example,
 \[
 F_X(2.5) = P(X \leq 2.5) = P(X = 0, 1, 2) = \frac{7}{8}.
 \]

2. F_X has jumps at the values of $x_i \in \mathcal{X}$ and the size of the jump at x_i is equal to $P(X = x_i)$.

3. $F_X = 0$ for $x < 0$ since X cannot be negative, and $F_X(x) = 1$ for $x \geq 3$ since x is certain to be less than or equal to such a value.

F_X is right-continuous, namely, the function is continuous when a point is approached from the right. The property of right-continuity is a consequence of the definition of the cdf. In contrast, if we had defined $F_X(x) = P_X(X < x)$, F_X would then be left-continuous.

Theorem 1.5.3

The function $F_X(x)$ is a cdf if and only of the following three conditions hold:

a. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.

b. $F(x)$ is a nondecreasing function of x.

c. $F(x)$ is right-continuous; that is, for every number x_0, $\lim_{x \downarrow x_0} F(x) = F(x_0)$.

Example 1.5.4 (Tossing for a head) Suppose we do an experiment that consists of tossing a coin until a head appears. Let $p =$ probability of a head on any given toss, and define $X =$ number of tosses required to get a head. Then, for any $x = 1, 2, \ldots,$

\[
P(X = x) = (1 - p)^{x-1}p.
\]

The cdf is

\[
F_X(x) = P(X \leq x) = \sum_{i=1}^{x} P(X = i) = \sum_{i=1}^{x} (1 - p)^{i-1}p = 1 - (1 - p)^x.
\]

It is easy to show that if $0 < p < 1$, then $F_X(x)$ satisfies the conditions of Theorem 1.5.3. First,

\[
\lim_{x \to -\infty} F_X(x) = 0
\]
since \(F_X(x) = 0 \) for all \(x < 0 \), and
\[
\lim_{x \to -\infty} F_X(x) = \lim_{x \to \infty} (1 - (1 - p)^x) = 1,
\]
where \(x \) goes through only integer values when this limit is taken. To verify property (b), we simply note that the sum contains more positive terms as \(x \) increases. Finally, to verify (c), note that, for any \(x \), \(F_X(x + \epsilon) = F_X(x) \) if \(\epsilon > 0 \) is sufficiently small. Hence,
\[
\lim_{\epsilon \downarrow 0} F_X(x + \epsilon) = F_X(x),
\]
so \(F_X(x) \) is right-continuous.

Example 1.5.5 (Continuous cdf)

An example of a continuous cdf (logistic distribution) is the function
\[
F_X(x) = \frac{1}{1 + e^{-x}}.
\]
It is easy to verify that
\[
\lim_{x \to -\infty} F_X(x) = 0 \quad \text{and} \quad \lim_{x \to \infty} F_X(x) = 1.
\]
Differentiating \(F_X(x) \) gives
\[
\frac{d}{dx} F_X(x) = \frac{e^{-x}}{(1 + e^{-x})^2} > 0,
\]
showing that \(F_X(x) \) is increasing. \(F_X \) is not only right-continuous, but also continuous.

Definition of Continuous Random Variable A random variable \(X \) is continuous if \(F_X(x) \) is a continuous function of \(x \). A random variable \(X \) is discrete if \(F_X(x) \) is a step function of \(x \).

We close this section with a theorem formally stating that \(F_X \) completely determines the probability distribution of a random variable \(X \). This is true if \(P(X \in A) \) is defined only for events \(A \) in \(\mathbb{B}^1 \), the smallest sigma algebra containing all the intervals of real numbers of the form \((a, b), [a, b), (a, b], \) and \([a, b] \). If probabilities are defined for a larger class of events, it is possible for two random variables to have the same distribution function but not the same probability for every event (see Chung 1974, page 27).

Definition of Identical Random Variables The random variables \(X \) and \(Y \) are identically distributed if, for every set \(A \in \mathbb{B}^1 \), \(P(X \in A) = P(Y \in A) \).
Note that two random variables that are identically distributed are not necessarily equal. That is, the above definition does not say that \(X = Y \).

Example 1.5.9 (identically distributed random variables) Consider the experiment of tossing a fair coin three times. Define the random variables \(X \) and \(Y \) by

\[
X = \text{number of heads observed} \quad \text{and} \quad Y = \text{number of tails observed}.
\]

For each \(k = 0, 1, 2, 3 \), we have \(P(X = k) = P(Y = k) \). So \(X \) and \(Y \) are identically distributed. However, for no sample point do we have \(X(s) = Y(s) \).

Theorem 1.5.10 The following two statements are equivalent:

a. The random variables \(X \) and \(Y \) are identically distributed.

b. \(F_X(x) = F_Y(x) \) for every \(x \).

Proof: To show equivalence we must show that each statement implies the other. We first show that \((a) \Rightarrow (b) \).

Because \(X \) and \(Y \) are identically distributed, for any set \(A \in \mathbb{B} \), \(P(X \in A) = P(Y \in A) \). In particular, for every \(x \), the set \((-\infty, x] \) is in \(\mathbb{B} \), and

\[
F_X(x) = P(X \in (-\infty, x]) = P(Y \in (-\infty, x]) = F_Y(x).
\]

The above argument showed that if the \(X \) and \(Y \) probabilities agreed in all sets, then agreed on intervals. To show \((b) \Rightarrow (a) \), we must prove if the \(X \) and \(Y \) probabilities agree on all intervals, then they agree on all sets. For more details see Chung (1974, section 2.2). \(\square \)