
1.4 Random Variable

Motivation example In an opinion poll, we might decide to ask 50 people whether they agree

or disagree with a certain issue. If we record a “1” for agree and “0” for disagree, the sample

space for this experiment has 250 elements. If we define a variable X=number of 1s recorded

out of 50, we have captured the essence of the problem. Note that the sample space of X

is the set of integers {1, 2, . . . , 50} and is much easier to deal with than the original sample

space.

In defining the quantity X, we have defined a mapping (a function) from the original sample

space to a new sample space, usually a set of real numbers. In general, we have the following

definition.

Definition of Random Variable A random variable is a function from a sample space S into

the real numbers.

Example 1.4.2 (Random variables)

In some experiments random variables are implicitly used; some examples are these.

Experiment Random variable

Toss two dice X =sum of the numbers

Toss a coin 25 times X =number of heads in 25 tosses

Apply different amounts of

fertilizer to corn plants X =yield/acre

Suppose we have a sample space

S = {s1, . . . , sn}

with a probability function P and we define a random variable X with range X = {x1, . . . , xm}.
We can define a probability function PX on X in the following way. We will observe X = xi

if and only if the outcome of the random experiment is an sj ∈ S such that X(sj) = xi.

Thus,

PX(X = xi) = P ({sj ∈ S : X(sj) = xi}). (1)
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Note PX is an induced probability function on X , defined in terms of the original function

P . Later, we will simply write PX(X = xi) = P (X = xi).

Fact The induced probability function defined in (1) defines a legitimate probability function

in that it satisfies the Kolmogorov Axioms.

Proof: CX is finite. Therefore B is the set of all subsets of X . We must verify each of the

three properties of the axioms.

(1) If A ∈ B then PX(A) = P (∪xi∈A{sj ∈ S : X(sj) = xi}) ≥ 0 since P is a probability

function.

(2) PX(X ) = P (∪m
i=1{sj ∈ S : X(sj) = xi}) = P (S) = 1.

(3) If A1, A2, . . . ∈ B and pairwise disjoint then

PX(∪∞k=1Ak) = P (∪∞k=1{∪xi∈Ak
{sj ∈ S : X(sj) = xi}})

=
∞∑

k=1

P (∪xi∈Ak
{sj ∈ S : X(sj) = xi} =

∞∑

k=1

PX(Ak),

where the second inequality follows from the fact P is a probability function. ¤

A note on notation: Random variables will always be denoted with uppercase letters and

the realized values of the variable will be denoted by the corresponding lowercase letters.

Thus, the random variable X can take the value x.

Example 1.4.3 (Three coin tosses-II) Consider again the experiment of tossing a fair coin

three times independently. Define the random variable X to be the number of heads obtained

in the three tosses. A complete enumeration of the value of X for each point in the sample

space is

s HHH HHT HTH THH TTH THT HTT TTT

X(s) 3 2 2 2 1 1 1 0

The range for the random variable X is X = {0, 1, 2, 3}. Assuming that all eight points

in S have probability 1
8
, by simply counting in the above display we see that the induced

probability function on X is given by
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x 0 1 2 3

PX(X = x) 1
8

3
8

3
8

1
8

The previous illustrations had both a finite S and finite X , and the definition of PX was

straightforward. Such is also the case if X is countable. If X is uncountable, we define the

induced probability function, PX , in a manner similar to (1). For any set A ⊂ X ,

PX(X ∈ A) = P ({s ∈ S : X(s) ∈ A}). (2)

This does define a legitimate probability function for which the Kolmogorov Axioms can be

verified.

Distribution Functions

Definition of Distribution The cumulative distribution function (cdf) of a random variable

X, denoted by FX(x), is defined by

FX(x) = PX(X ≤ x), for all x.

Example 1.5.2 (Tossing three coins) Consider the experiment of tossing three fair coins,

and let X =number of heads observed. The cdf of X is

FX(x) =





0 if −∞ < x < 0

1
8

if 0 ≤ x < 1

1
2

if 1 ≤ x < 2

7
8

if 2 ≤ x < 3

1 if 3 ≤ x < ∞.
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Remark:

1. FX is defined for all values of x, not just those in X = {0, 1, 2, 3}. Thus, for example,

FX(2.5) = P (X ≤ 2.5) = P (X = 0, 1, 2) =
7

8
.

2. FX has jumps at the values of xi ∈ X and the size of the jump at xi is equal to

P (X = xi).

3. FX = 0 for x < 0 since X cannot be negative, and FX(x) = 1 for x ≥ 3 since x is

certain to be less than or equal to such a value.

FX is right-continuous, namely, the function is continuous when a point is approached

from the right. The property of right-continuity is a consequence of the definition of the cdf.

In contrast, if we had defined FX(x) = PX(X < x), FX would then be left-continuous.

Theorem 1.5.3

The function FX(x) is a cdf if and only of the following three conditions hold:

a. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

b. F (x) is a nondecreasing function of x.

c. F (x) is right-continuous; that is, for every number x0, limx↓x0 F (x) = F (x0).

Example 1.5.4 (Tossing for a head) Suppose we do an experiment that consists of tossing

a coin until a head appears. Let p =probability of a head on any given toss, and define

X =number of tosses required to get a head. Then, for any x = 1, 2, . . .,

P (X = x) = (1− p)x−1p.

The cdf is

FX(x) = P (X ≤ x) =
x∑

i=1

P (X = i) =
x∑

i=1

(1− p)i−1p = 1− (1− p)x.

It is easy to show that if 0 < p < 1, then FX(x) satisfies the conditions of Theorem 1.5.3.

First,

lim
x→−∞

FX(x) = 0
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since FX(x) = 0 for all x < 0, and

lim
x→∞

FX(x) = lim
x→∞

(1− (1− p)x) = 1,

where x goes through only integer values when this limit is taken. To verify property (b),

we simply note that the sum contains more positive terms as x increases. Finally, to verify

(c), note that, for any x, FX(x + ε) = FX(x) if ε > 0 is sufficiently small. Hence,

lim
ε↓0

FX(x + ε) = FX(x),

so FX(x) is right-continuous.

Example 1.5.5 (Continuous cdf)

An example of a continuous cdf (logistic distribution) is the function

FX(x) =
1

1 + e−x
.

It is easy to verify that

lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1.

Differentiating FX(x) gives
d

dx
FX(x) =

e−x

(1 + e−x)2
> 0,

showing that FX(x) is increasing. FX is not only right-continuous, but also continuous.

Definition of Continuous Random Variable A random variable X is continuous if FX(x) is a

continuous function of x. A random variable X is discrete if FX(x) is a step function of x.

We close this section with a theorem formally stating that FX completely determines the

probability distribution of a random variable X. This is true if P (X ∈ A) is defined only

for events A in B1, the smallest sigma algebra containing all the intervals of real numbers of

the form (a, b), [a, b), (a, b], and [a, b]. If probabilities are defined for a larger class of events,

it is possible for two random variables to have the same distribution function but not the

same probability for every event (see Chung 1974, page 27).

Definition of Identical Random Variables The random variables X and Y are identically dis-

tributed if, for every set A ∈ B1, P (X ∈ A) = P (Y ∈ A).
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Note that two random variables that are identically distributed are not necessarily equal.

That is, the above definition does not say that X = Y .

Example 1.5.9 (identically distributed random variables) Consider the experiment of toss-

ing a fair coin three times. Define the random variables X and Y by

X =number of heads observed and Y =number of tails observed.

For each k = 0, 1, 2, 3, we have P (X = k) = P (Y = k). So X and Y are identically

distributed. However, for no sample point do we have X(s) = Y (s).

Theorem 1.5.10 The following two statements are equivalent:

a. The random variables X and Y are identically distributed.

b. FX(x) = FY (x) for every x.

Proof: To show equivalence we must show that each statement implies the other. We first

show that (a) ⇒ (b).

Because X and Y are identically distributed, for any set A ∈ B1, P (X ∈ A) = P (Y ∈ A).

In particular, for every x, the set (−∞, x] is in B1, and

FX(x) = P (X ∈ (−∞, x]) = P (Y ∈ (−∞, x]) = FY (x).

The above argument showed that if the X and Y probabilities agreed in all sets, then

agreed on intervals. To show (b) ⇒ (a), we must prove if the X and Y probabilities agree on

all intervals, then they agree on all sets. For more details see Chung (1974, section 2.2). ¤
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