5.3.1 Properties of the sample mean and variance

<u>Lemma 5.3.2</u> (Facts about chi-squared random variables)

We use the notation χ_p^2 to denote a chi-squared random variable with p degrees of freedom.

- (a) If Z is a N(0,1) random variable, then $Z^2 \sim \chi_1^2$; that is, the square of a standard normal random variable is a chi-squared random variable.
- (b) If X₁,..., X_n are independent and X_i ~ χ²_p, then X₁ + ··· + X_n ~ χ²_{p₁+···+p_n}; that is, independent chi-squared variables add to a chi-squared variables, and the degrees of freedom also add.

PROOF: . Part (a) can be established based on the density formula for variable transformations. Part (b) can be established with the moment generating function. \Box

<u>Theorem 5.3.1</u> Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution, and let $\bar{X} = (1/n) \sum_{i=1}^n X_i$ and $S^2 = [1/(n-1)] \sum_{i=1}^n (X_i - \bar{X})^2$. Then

- (a) \bar{X} and S^2 are independent random variables.
- (b) \bar{X} has a $N(\mu, \sigma^2/n)$ distribution.
- (c) $(n-1)S^2/\sigma^2$ has a chi-squared distribution with n-1 degrees of freedom.

PROOF: Without loss of generality, we assume that $\mu = 0$ and $\sigma = 1$. Parts (a) and (c) are proved as follows.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} [(X_{1} - \bar{X})^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2})]$$
$$= \frac{1}{n-1} [\left(\sum_{i=2}^{n} (X_{i} - \bar{X})\right)^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2})]$$

The last equality follows from the fact $\sum_{i=1}^{n} (X_i - \bar{X}) = 0$. Thus, S^2 can be written as a function only of $(X_1 - \bar{X}, \ldots, X_n - \bar{X})$. We will now show that these random variables are independent of \bar{X} . The joint pdf of the sample X_1, \ldots, X_n is given by

$$f(x_1, \dots, x_n) = \frac{1}{(2\pi)^{n/2}} e^{-(1/2)\sum_{i=1}^n x_i^2}, \quad -\infty < x_i < \infty.$$

Make the transformation

$$y_1 = \bar{x},$$

$$y_2 = x_2 - \bar{x},$$

$$\vdots$$

$$y_n = x_n - \bar{x}.$$

This is a linear transformation with a Jacobian equal to 1/n. We have

$$f(y_1, \dots, y_n) = \frac{n}{(2\pi)^{n/2}} e^{-(1/2)(y_1 - \sum_{i=2}^n y_i)^2} e^{-(1/2)\sum_{i=2}^n (y_i + y_1)^2}, \quad -\infty < y_i < \infty$$
$$= \left[\left(\frac{n}{2\pi}\right)^{1/2} e^{(-ny_1^2)/2} \right] \left[\frac{n^{1/2}}{(2\pi)^{(n-1)/2}} e^{-(1/2)\left[\sum_{i=2}^n y_i^2 + (\sum_{i=2}^n y_i)^2\right]} \right], \quad -\infty < y_i < \infty.$$

Hence, Y_1 is independent of Y_2, \ldots, Y_n , and \overline{X} is independent of S^2 .

Since

$$\bar{x}_{n+1} = \frac{\sum_{i=1}^{n+1} x_i}{n+1} = \frac{x_{n+1} + n\bar{x}_n}{n+1} = \bar{x}_n + \frac{1}{n+1}(x_{n+1} - \bar{x}_n),$$

we have

$$nS_{n+1}^{2} = \sum_{i=1}^{n+1} (x_{i} - \bar{x}_{n+1})^{2} = \sum_{i=1}^{n+1} [(x_{i} - \bar{x}_{n}) - \frac{1}{n+1} (x_{n+1} - \bar{x}_{n})]^{2}$$
$$= \sum_{i=1}^{n+1} [(x_{i} - \bar{x}_{n})^{2} - 2(x_{i} - \bar{x}_{n})(\frac{x_{n+1} - \bar{x}_{n}}{n+1}) + \frac{1}{(n+1)^{2}} (x_{n+1} - \bar{x}_{n})^{2}]$$
$$= \sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2} + (x_{n+1} - \bar{x}_{n})^{2} - 2\frac{(x_{n+1} - \bar{x}_{n})^{2}}{n+1} + \frac{(n+1)}{(n+1)^{2}} (x_{n+1} - \bar{x}_{n})^{2}$$
$$= (n-1)S^{2} + \frac{n}{n+1} (x_{n+1} - \bar{x}_{n})^{2}.$$

Now consider n = 2, $S_2^2 = \frac{1}{2}(X_2 - X_1)^2$. Since $(X_2 - X_1)/\sqrt{2} \sim N(0, 1)$, part (a) of Lemma 5.3.2 shows that $S_2^2 \sim \chi_1^2$. Proceeding with the induction, we assume that for n = k, $(k-1)S_k^2 \sim \chi_{k-1}^2$. For n = k+1, we have

$$kS_{k+1}^2 = (k-1)S_k^2 + \frac{k}{k+1}(X_{k+1} - \bar{X}_k)^2.$$

Since S_k^2 is independent of X_{k+1} and \bar{X}_k , and $X_{k+1} - \bar{X}_k \sim N(0, \frac{k+1}{k}), kS_{k+1}^2 \sim \chi_k^2$.

<u>Lemma 5.3.3</u>

Let $X_j \sim N(\mu_j, \sigma_j^2)$, j = 1, ..., n, independent. For constants a_{ij} and b_{rj} (j = 1, ..., n; i = 1, ..., k; r = 1, ..., m), where $k + m \leq n$, define

$$U_i = \sum_{j=1}^n a_{ij} X_j, \quad i = 1, \dots, k,$$
$$V_r = \sum_{j=1}^n b_{rj} X_j, \quad r = 1, \dots, m.$$

- (a) The random variables U_i and V_r are independent if and only if $\text{Cov}(U_i, V_r) = 0$. Furthermore, $\text{Cov}(U_i, V_r) = \sum_{j=1}^n a_{ij} b_{rj} \sigma_j^2$.
- (b) The random vectors (U_1, \ldots, U_k) and (V_1, \ldots, V_m) are independent if and only if U_i is independent of V_r for all pairs i, r $(i = 1, \ldots, k; r = 1, \ldots, m)$.