
5.3.1 Properties of the sample mean and variance

Lemma 5.3.2 (Facts about chi-squared random variables)

We use the notation χ2
p to denote a chi-squared random variable with p degrees of freedom.

(a) If Z is a N(0, 1) random variable, then Z2 ∼ χ2
1; that is, the square of a standard

normal random variable is a chi-squared random variable.

(b) If X1, . . . , Xn are independent and Xi ∼ χ2
p, then X1 + · · · + Xn ∼ χ2

p1+···+pn
; that is,

independent chi-squared variables add to a chi-squared variables, and the degrees of

freedom also add.

Proof: . Part (a) can be established based on the density formula for variable transforma-

tions. Part (b) can be established with the moment generating function. ¤

Theorem 5.3.1 Let X1, . . . , Xn be a random sample from a N(µ, σ2) distribution, and let

X̄ = (1/n)
∑n

i=1 Xi and S2 = [1/(n− 1)]
∑n

i=1(Xi − X̄)2. Then

(a) X̄ and S2 are independent random variables.

(b) X̄ has a N(µ, σ2/n) distribution.

(c) (n− 1)S2/σ2 has a chi-squared distribution with n− 1 degrees of freedom.

Proof: Without loss of generality, we assume that µ = 0 and σ = 1. Parts (a) and (c) are

proved as follows.

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1
[(X1 − X̄)2 +

n∑
i=2

(Xi − X̄)2)]

=
1

n− 1
[
( n∑

i=2

(Xi − X̄)
)2

+
n∑

i=2

(Xi − X̄)2)]

The last equality follows from the fact
∑n

i=1(Xi − X̄) = 0. Thus, S2 can be written as a

function only of (X1 − X̄, . . . , Xn − X̄). We will now show that these random variables are

independent of X̄. The joint pdf of the sample X1, . . . , Xn is given by

f(x1, . . . , xn) =
1

(2π)n/2
e−(1/2)

Pn
i=1 x2

i , −∞ < xi < ∞.
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Make the transformation

y1 = x̄,

y2 = x2 − x̄,

...

yn = xn − x̄.

This is a linear transformation with a Jacobian equal to 1/n. We have

f(y1, . . . , yn) =
n

(2π)n/2
e−(1/2)(y1−

Pn
i=2 yi)

2

e−(1/2)
Pn

i=2(yi+y1)2 , −∞ < yi < ∞

=
[
(

n

2π
)1/2e(−ny2

1)/2
][ n1/2

(2π)(n−1)/2
e−(1/2)[

Pn
i=2 y2

i +(
Pn

i=2 yi)
2]
]
, −∞ < yi < ∞.

Hence, Y1 is independent of Y2, . . . , Yn, and X̄ is independent of S2.

Since

x̄n+1 =

∑n+1
i=1 xi

n + 1
=

xn+1 + nx̄n

n + 1
= x̄n +

1

n + 1
(xn+1 − x̄n),

we have

nS2
n+1 =

n+1∑
i=1

(xi − x̄n+1)
2 =

n+1∑
i=1

[(xi − x̄n)− 1

n + 1
(xn+1 − x̄n)]2

=
n+1∑
i=1

[(xi − x̄n)2 − 2(xi − x̄n)(
xn+1 − x̄n

n + 1
) +

1

(n + 1)2
(xn+1 − x̄n)2]

=
n∑

i=1

(xi − x̄n)2 + (xn+1 − x̄n)2 − 2
(xn+1 − x̄n)2

n + 1
+

(n + 1)

(n + 1)2
(xn+1 − x̄n)2

= (n− 1)S2 +
n

n + 1
(xn+1 − x̄n)2.

Now consider n = 2, S2
2 = 1

2
(X2 −X1)

2. Since (X2 −X1)/
√

2 ∼ N(0, 1), part (a) of Lemma

5.3.2 shows that S2
2 ∼ χ2

1. Proceeding with the induction, we assume that for n = k,

(k − 1)S2
k ∼ χ2

k−1. For n = k + 1, we have

kS2
k+1 = (k − 1)S2

k +
k

k + 1
(Xk+1 − X̄k)

2.

Since S2
k is independent of Xk+1 and X̄k, and Xk+1 − X̄k ∼ N(0, k+1

k
), kS2

k+1 ∼ χ2
k. ¤
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Lemma 5.3.3

Let Xj ∼ N(µj, σ
2
j ), j = 1, . . . , n, independent. For constants aij and brj (j = 1, . . . , n; i =

1, . . . , k; r = 1, . . . ,m), where k + m ≤ n, define

Ui =
n∑

j=1

aijXj, i = 1, . . . , k,

Vr =
n∑

j=1

brjXj, r = 1, . . . , m.

(a) The random variables Ui and Vr are independent if and only if Cov(Ui, Vr) = 0. Fur-

thermore, Cov(Ui, Vr) =
∑n

j=1 aijbrjσ
2
j .

(b) The random vectors (U1, . . . , Uk) and (V1, . . . , Vm) are independent if and only if Ui is

independent of Vr for all pairs i, r (i = 1, . . . , k; r = 1, . . . , m).
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