
4.5 Covariance and Correlation

In earlier sections, we have discussed the absence or presence of a relationship between two

random variables, Independence or nonindependence. But if there is a relationship, the

relationship may be strong or weak. In this section, we discuss two numerical measures of

the strength of a relationship between two random variables, the covariance and correlation.

Throughout this section, we will use the notation EX = µX , EY = µY , VarX = σ2
X , and

VarY = σ2
Y .

Definition 4.5.1 The covariance of X and Y is the number defined by

Cov(X,Y ) = E((X − µX)(Y − µY )).

Definition 4.5.2 The correlation of X and Y is the number defined by

ρXY =
Cov(X, Y )

σXσY

.

The value ρXY is also called the correlation coefficient.

Theorem 4.5.3 For any random variables X and Y ,

Cov(X, Y ) = EXY − µXµY .

Theorem 4.5.5 If X and Y are independent random variables, then Cov(X, Y ) = 0 and

ρXY = 0.

Theorem 4.5.6 If X and Y are any two random variables and a and b are any two constants,

then

Var(aX + bY ) = a2VarX + b2VarY + 2abCov(X,Y ).

If X and Y are independent random variables, then

Var(AX + bY ) = a2VarX + b2VarY.

Theorem 4.5.7 For any random variables X and Y ,
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a. −1 ≤ ρXY ≤ 1.

b. |ρXY | = 1 if and only if there exist numbers a 6= 0 and b such that P (Y = aX + b) = 1.

If ρXY = 1, then a > 0, and if ρXY = −1, then a < 0.

Proof: Consider the function h(t) defined by

h(t) = E((X − µX)t + (Y − µY ))2

= t2σ2
X + 2tCov(X,Y ) + σ2

Y .

Since h(t) ≥ 0 and it is quadratic function,

(2Cov(X,Y ))2 − 4σ2
Xσ2

Y ≤ 0.

This is equivalent to

−σXσY ≤ Cov(X, Y ) ≤ σXσY .

That is,

−1 ≤ ρXY ≤ 1.

Also, |ρXY | = 1 if and only if the discriminant is equal to 0, that is, if and only if h(t) has a

single root. But since ((X − µX)t + (Y − µY ))2 ≥ 0, h(t) = 0 if and only if

P ((X − µX)t + (Y − µY ) = 0) = 1.

This P (Y = aX + b) = 1 with a = −t and b = µXt + µY , where t is the root of h(t). Using

the quadratic formula, we see that this root is t = −Cov(X,Y )/σ2
X . Thus a = −t has the

same sign as ρXY , proving the final assertion. ¤

Example 4.5.8 (Correlation-I) Let X have a uniform(0,1) distribution and Z have a uni-

form(0,0.1) distribution. Suppose X and Z are independent. Let Y = X + Z and consider

the random vector (X, Y ). The joint pdf of (X, Y ) is

f(x, y) = 10, 0 < x < 1, x < y < x + 0.1

Note f(x, y) can be obtained from the relationship f(x, y) = f(y|x)f(x). Then

Cov(X, Y ) = EXY = −(EX)(EY )

= EX(X + Z)− (EX)(E(X + Z))

= σ2
X =

1

12
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The variance of Y is σ2
Y = VarX + VarZ = 1

12
+ 1

1200
. Thus

ρXY =
1/12√

1/12
√

1/12 + 1/1200
=

√
100

101
.

The next example illustrates that there may be a strong relationship between X and Y , but

if the relationship is not linear, the correlation may be small.

Example 4.5.9 (Correlation-II) Let X ∼ Unif(−1, 1), Z ∼ Unif(0, 0.1), and X and Z be

independent. Let Y = X2 + Z and consider the random vector (X,Y ). Since given X = x,

Y ∼ Unif(x2, x2 + 0.1). The joint pdf of X and Y is

f(x, y) = 5, −1 < x < 1, x2 < y < x2 +
1

10
.

Cov(X,Y ) = E(X(X2 + Z))− (EX)(E(X2 + Z))

= EX3 + EXZ − 0E(X2 + Z)

= 0

Thus, ρXY = Cov(X,Y )/(σXσY ) = 0.

Definition 4.5.10 Let −∞ < µX < ∞, −∞ < µY < ∞, 0 < σX , 0 < σY , and −1 < ρ < 1 be

five real numbers. The bivariate normal pdf with means µX and µY , variances σ2
X and σ2

Y ,

and correlation ρ is the bivariate pdf given by

f(x, y) =
1

2πσxσY

√
1− ρ2

exp
{− 1

2(1− ρ2)

(
(
x− µX

σX

)2−2ρ(
x− µX

σX

)(
y − µY

σY

)+(
y − µY

σY

)2
)}

for −∞ < x < ∞ and −∞ < y < ∞.

The many nice properties of this distribution include these:

a. The marginal distribution of X is N(µX , σ2
X).

b. The marginal distribution of Y is N(µY , σ2
Y ).

c. The correlation between X and Y is ρXY = ρ.

d. For any constants a and b, the distribution of aX + bY is N(aµX + bµY , a2σ2
X + b2σ2

Y +

2abρσXσY ).
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Assuming (a) and (b) are true, we will prove (c). Let

s = (
x− µX

σX

)(
y − µY

σY

) and t = (
x− µX

σX

).

Then x = σXt+µX , y = (σY s/t)+µY , and the Jacobian of the transformation is J = σXσY /t.

With this change of variables, we obtain

ρXY =

∫ ∞

−∞

∫ ∞

−∞
sf(σXt + µX ,

σY s

t
+ µY )|σXσY

t
|dsdt

=

∫ ∞

−∞

∫ ∞

−∞
s(2πσXσY

√
1− ρ2)−1 exp

(− 1

2(1− ρ)2
(t2 − 2ρs + (

s

t
)2)

)σXσY

|t| dsdt

=

∫ ∞

−∞

1√
2π

exp(−t2

2
)dt

∫ ∞

−∞

s√
2π

√
(1− ρ2)t2

exp
(− (s− ρt2)2

2(1− ρ2)t2
)
ds

The inner integral is ES, where S is a normal random variable with ES = ρt2 and VarS =

(1− ρ2)t2. Thus,

ρXY =

∫ ∞

−∞

ρt2√
2π

exp{−t2/2}dt = ρ.
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