
4 Hierarchical Models and Mixture Distributions

Example 4.1 (Binomial-Poisson hierarchy) Perhaps the most classic hierarchical model is the

following. An insect lays a large number of eggs, each surviving with probability p. On the average,

how many eggs will survive?

The large number of eggs laid is a random variable, often taken to be Poisson(λ). Furthermore,

if we assume that each egg’s survival is independent, then we have Bernoulli trials. Therefore,, if

we let X=number of survivors and Y =number of eggs laid, we have

X|Y binomial(Y, p), Y ∼ Poisson(λ),

a hierarchical model.

The advantage of the hierarchy is that complicated process may be modeled by a sequence of

relatively simple models placed in a hierarchy.

Example 4.2 (Continuation of Example 4.1) The random variable X has the distribution given

by
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so X ∼ Poisson(λ). Thus, any marginal inference on X is with respect to a Poisson(λp) dis-

tribution, with Y playing no part at all. Introducing Y in the hierarchy was mainly to aid our

understanding of the model. On the average,

EX = λp

eggs will survive.

Sometimes, calculations can be greatly simplified be using the following theorem.
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Theorem 4.1 If X and Y are any two random variables, then

EX = E(E(X|Y )),

provided that the expectations exist.

Proof: Let f(x, y) denote the joint pdf of X and Y . By definition, we have

EX =

∫

inf xf(x, y)dxdy =

∫

[

∫

xf(x|y)dx]fY (y)dy
∫

E(X|y)fY (y)dy = E(E(X|Y ))

Replacing integrals by sums to prove the discrete case. �

Using Theorem 4.1, we have

EX = E(E(X|Y )) = E(pY ) = pλ

for Example 4.2.

Definition 4.1 A random variable X is said to have a mixture distribution if the distribution of

X depends on a quantity that also has a distribution.

Thus, in Example 4.1 the Poisson(λp) distribution is a mixture distribution since it is the result

of combining a binomial(Y, p) with Y ∼ Poisson(λ).

Theorem 4.2 (Conditional variance identity) For any two random variables X and Y ,

VarX = E(Var(X|Y )) + Var(E(X|Y )),

provided that the expectations exist.

Proof: By definition, we have

VarX = E([X − EX]2) = E([X − E(X|Y ) + E(X|Y ) − EX]2)

= E([X − E(X|Y )]2) + E([E(X|Y ) − EX]2) + 2E([X − E(X|Y )][E(X|Y ) − EX]).

The last term in this expression is equal to 0, however, which can easily be seen by iterating the

expectation:

E([X − E(X|Y )][E(X|Y ) − EX]) = E(E{[X − E(X|Y )][E(X|Y ) − EX]|Y })
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In the conditional distribution X|Y , X is the random variable. Conditional on Y , E(X—Y) and

EX are constants. Thus,

E{[X − E(X|Y )][E(X|Y ) − EX]|Y } = (E(X|Y ) − E(X|Y ))(E(X|Y ) − EX) = 0

Since

E([X − E(X|Y )]2) = E(E{[X − E(X|Y )]2|Y }) = E((̄X|Y )).

and

E([E(X|Y ) − EX]2) = Var(E(X|Y )),

Theorem 4.2 is proved. �

Example 4.3 (Beta-binomial hierarchy) One generalization of the binomial distribution is to allow

the success probability to vary according to a distribution. A standard model for this situation is

X|P ∼ binomial(P ), i = 1, . . . , n,

P ∼ beta(α, β).

The mean of X is then

EX = E[E(X|p)] = E[nP ] =
nα

α + β
.

Since P ∼ beta(α, β),

Var(E(X|P )) = Var(np) = n2 αβ

(α + β)2(α + β + 1)
.

Also, since X|P is binomial(n, P ), Var(X|P ) = nP (1 − P ). We then have

E[Var(X|P )] = nE[P (1 − P )] = n
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0
p(1 − p)pα−1(1 − p)β−1dp

= n
Γ(α + β)

Γ(α)Γ(β)

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
=

nαβ

(α + β)(α + β + 1)
.

Adding together the two pieces, we get

VarX =
nαβ(α + β + n)

(α + β)2(α + β + 1)
.
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5 Covariance and Correlation

In earlier sections, we have discussed the absence or presence of a relationship between two random

variables, Independence or nonindependence. But if there is a relationship, the relationship may be

strong or weak. In this section, we discuss two numerical measures of the strength of a relationship

between two random variables, the covariance and correlation.

Throughout this section, we will use the notation EX = µX , EY = µY , VarX = σ2
X , and

VarY = σ2
Y .

Definition 5.1 The covariance of X and Y is the number defined by

Cov(X,Y ) = E((X − µX)(Y − µY )).

Definition 5.2 The correlation of X and Y is the number defined by

ρXY =
Cov(X,Y )

σXσY
.

The value ρXY is also called the correlation coefficient.

Theorem 5.1 For any random variables X and Y ,

Cov(X,Y ) = EXY − µXµY .
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