4 Hierarchical Models and Mixture Distributions

Example 4.1 (Binomial-Poisson hierarchy) Perhaps the most classic hierarchical model is the
following. An insect lays a large number of eqgs, each surviving with probability p. On the average,
how many eggs will survive?

The large number of eggs laid is a random variable, often taken to be Poisson(\). Furthermore,
if we assume that each egg’s survival is independent, then we have Bernoulli trials. Therefore,, if

we let X =number of survivors and Y =number of eqggs laid, we have
X|Y binomial(Y, p), Y ~ Poisson(N),
a hierarchical model.

The advantage of the hierarchy is that complicated process may be modeled by a sequence of

relatively simple models placed in a hierarchy.

Example 4.2 (Continuation of Example 4.1) The random variable X has the distribution given

by
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so X ~ Poisson(\). Thus, any marginal inference on X is with respect to a Poisson(Ap) dis-
tribution, with Y playing no part at all. Introducing Y in the hierarchy was mainly to aid our

understanding of the model. On the average,
EX =XMp
eggs will survive.

Sometimes, calculations can be greatly simplified be using the following theorem.
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Theorem 4.1 If X and Y are any two random variables, then
EX = E(B(X|Y)),
provided that the expectations exist.
PRrROOF: Let f(z,y) denote the joint pdf of X and Y. By definition, we have

BX = [ intaf(e,p)dndy = [([ aflaly)dal o)y
[ By = BEEY))

Replacing integrals by sums to prove the discrete case. [
Using Theorem 4.1, we have
EX = B(E(X[Y)) = E(pY) = pA
for Example 4.2.

Definition 4.1 A random wvariable X is said to have a mizture distribution if the distribution of

X depends on a quantity that also has a distribution.

Thus, in Example 4.1 the Poisson(Ap) distribution is a mixture distribution since it is the result

of combining a binomial(Y, p) with Y ~ Poisson(\).

Theorem 4.2 (Conditional variance identity) For any two random variables X and Y,
VarX = E(Var(X|Y)) + Var(E(X|Y)),

provided that the expectations exist.

PRrROOF: By definition, we have

VarX = E([X — EX]?) = B([X — E(X|Y)+ E(X|Y) — EX]?)
= E([X - B(X|Y)*) + E(B(X|Y) - EX]*) + 2E([X — E(X|Y)][E(X]Y) — EX]).

The last term in this expression is equal to 0, however, which can easily be seen by iterating the

expectation:

E(X - EXY)[E(X]Y) - EX]) = B(E{[X - EX|Y)][E(X]Y) - EX]|Y'})
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In the conditional distribution X|Y, X is the random variable. Conditional on Y, E(X—Y) and

EX are constants. Thus,
E{[X - E(XIV)|[E(X|Y) - EX]|Y} = (E(X|Y) - E(X]Y))(E(X]Y) - EX) =0
Since
E([X - E(X|Y)]) = E(B{[X — E(X|Y)]’[Y}) = E(X|Y)).

and

E(E(X|Y) - EX]2) = Var(E(X|Y)),
Theorem 4.2 is proved. [

Example 4.3 (Beta-binomial hierarchy) One generalization of the binomial distribution is to allow

the success probability to vary according to a distribution. A standard model for this situation is
X|P ~ binomial(P), i=1,...,n,
P ~ beta(av, ).

The mean of X is then
EX = E[E(X|p)] = E[nP] =

a+ 8
Since P ~ beta(a, ),

af
(a+ B2 (a+p8+1)

Also, since X|P is binomial(n, P), Var(X|P) =nP(1 — P). We then have

Var(E(X|P)) = Var(np) = n®

a 1
E[Var(X|P)] = nE[P(1 - P)| = n% /0 p(1 — p)p™ (1~ p)*dp
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Adding together the two pieces, we get

nafB(o+ [ +n)
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5 Covariance and Correlation

In earlier sections, we have discussed the absence or presence of a relationship between two random
variables, Independence or nonindependence. But if there is a relationship, the relationship may be
strong or weak. In this section, we discuss two numerical measures of the strength of a relationship
between two random variables, the covariance and correlation.

Throughout this section, we will use the notation EX = ux, EY = py, VarX = a§<, and

VarY = a%.
Definition 5.1 The covariance of X and Y is the number defined by
Coo(X,Y) = B((X — ux)(Y — py)).

Definition 5.2 The correlation of X and Y is the number defined by

The value pxy is also called the correlation coefficient.

Theorem 5.1 For any random variables X and Y,

Cov(X,Y)=EXY — uxpy.
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