3.6 Inequalities and Identities

Theorem 3.6.1 (Chebychev's Inequality)

Let X be a random variable and let g(x) be a nonnegative function. Then, for any r > 0,

$$P(g(X) \ge r) \le \frac{Eg(X)}{r}.$$

Proof:

$$Eg(X) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$\geq \int_{\{x:g(x) \geq r\}} g(x) f_X(x) dx \quad (g \text{ is nonnegative})$$

$$\geq r \int_{\{x:g(x) \geq r\}} f_X(x) dx$$

$$= rP(g(X) \geq r).$$

Rearranging now produces the desired inequality.

Example 3.6.2 (Illustrating Chebychev)

let $g(x) = (x - \mu)^2 / \sigma^2$, where $\mu = EX$ and $\sigma^2 = VarX$. For convenience write $r = t^2$. Then

$$P(\frac{(X-\mu)^2}{\sigma^2} \ge t^2) \le \frac{1}{t^2} E \frac{(X-\mu)^2}{\sigma^2} = \frac{1}{t^2}.$$

Thus,

$$P(|X - \mu| \ge t\sigma) \le \frac{1}{t^2}.$$

For example, taking t = 2, we get

$$P(|X - \mu| \ge 2\sigma) \le \frac{1}{2^2} = 0.25.$$

Example 3.6.3 (A normal probability inequality)

If Z is standard normal, then

$$P(|Z| \ge t) \le \sqrt{\frac{2}{\pi}} \frac{e^{-t^2/2}}{t}$$
, for all $t > 0$.

Write

$$P(Z \ge t) = \frac{1}{\sqrt{2\pi}} \int_t^\infty e^{-x^2/2} dx$$

$$\le \frac{1}{\sqrt{2\pi}} \int_t^\infty \frac{x}{t} e^{-x^2/2} dx \quad \text{(since } x/t > 1\text{)}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{e^{-t^2/2}}{t}$$

and use the fact that $P(|Z| \ge t) = 2P(Z \ge t)$.

Theorem 3.6.4

Let $X_{\alpha,\beta}$ denote a gamma (α,β) random variable with pdf $f(x|\alpha,\beta)$, where $\alpha > 1$. Then for any constants a and b,

$$P(a < X_{\alpha,\beta} < b) = \beta f(a|\alpha,\beta) - f(b|\alpha,\beta) + P(a < X_{\alpha-1,\beta} < b).$$

Lemma 3.6.5(Stein's Lemma)

Let $X \sim N(\theta, \sigma^2)$, and let g be a differentiable function satisfying $E[g'(X)] < \infty$. Then

$$E[g(X)(X - \theta)] = \sigma^2 E g'(X).$$

PROOF: The left-hand side is

$$E[g(X)(X-\theta)] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} g(x)(x-\theta)e^{-(x-\theta)^2/(2\sigma^2)} dx.$$

Using integration by parts with u = g(x) and $dv = (x - \theta)e^{-(x-\theta)^2/(2\sigma^2)}dx$ to get

$$E[g(X)(X-\theta)] = \frac{1}{\sqrt{2\pi}\sigma} \Big[-\sigma^2 g(x) e^{-(x-\theta)^2/(2\sigma^2)} \Big|_{-\infty}^{\infty} + \sigma^2 \int_{-\infty}^{\infty} g'(x) e^{-(x-\theta)^2/(2\sigma^2)} dx \Big].$$

The condition on g' is enough to ensure that the first term is 0 and what remains on the right-hand side is $\sigma^2 E g'(X)$. \square

Example 3.6.6 (Higher-order normal moments)

Stein's lemma makes calculation of higher-order moments quite easy/ For example, if $X \sim$

 $N(\theta, \sigma^2)$, then

$$EX^{3} = EX^{2}(X - \theta + \theta) = EX^{2}(X - \theta) + \theta EX^{2}$$
$$= 2\sigma^{2}EX + \theta EX^{2} = 2\sigma^{2}\theta + \theta(\sigma^{2} + \theta^{2})$$
$$= 3\theta\sigma^{2} + \theta^{3}.$$

Theorem 3.6.7

Let χ_p^2 denote a chi-squared random variable with p degrees of freedom. For any function h(x),

$$Eh(\chi_p^2) = pE\left(\frac{h(\chi_{p+2}^2)}{\chi_{p+2}^2}\right)$$

provided the expectations exist.

Some moment calculations are very easy with Theorem ??. For example, the mean of a χ_p^2 is

$$E\chi_p^2 = pE\left(\frac{\chi_p^2}{\chi_p^2}\right) = pE(1) = p,$$

and the second moment is

$$E(\chi_p^2)^2 = pE(\frac{(\chi_p^2)^2}{\chi_p^2}) = pE(\chi_p^2) = p(p+2).$$

So
$$Var(\chi_p^2) = p(p+2) - p^2 = 2p$$
.

Theorem 3.6.8 (Hwang)

Let g(x) be a function with $-\infty < Eg(X) < \infty$ and $-\infty < g(-1) < \infty$. Then:

a. If $X \sim Poisson(\lambda)$,

$$E(\lambda g(X)) = E(Xg(X-1)).$$

b. If $X \sim \text{negative binomial}(r, p)$,

$$E((1-p)g(X)) = E(\frac{X}{r+X-1}g(X-1)).$$

Example 3.6.9 (Higher-order Poisson moments)

For $X \sim \text{Poisson}(\lambda)$, take $g(x) = x^2$ and use Theorem 3.6.8:

$$E(\lambda X^2) = E(X(X-1)^2) = E(X^3 - 2X^2 + X).$$

Therefore, the third moment of a $Poisson(\lambda)$ is

$$EX^{3} = \lambda EX^{2} = 2EX^{2} - EX$$
$$= \lambda(\lambda + \lambda^{2}) + 2(\lambda + \lambda^{2}) - \lambda = \lambda^{3} + 3\lambda^{2} + \lambda.$$

For the negative binomial, the mean can be calculated by taking g(x) = r + x,

$$E((1-p)(r+X)) = E(\frac{X}{r+X-1}(r+X-1)) = EX,$$

so, rearranging, we get

$$EX = \frac{r(1-p)}{p}.$$