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Hour 1

1 Exact Distribution of An Order Statistic

If the random variables X1, ..., Xn are arranged in order

of magnitude and then written as

X(1) ≤ · · · ≤ X(n),

we call X(i) the ith order statistic (i = 1, ..., n). We as-

sume Xi to be statistically independent and identically

distributed - a random sample from a continuous pop-

ulation with cumulative distribution function (cdf) F (x)

and probability density function (pdf) f (x).

CDF and PDF of Xr

F(r)(x) = Pr{X(r) ≤ x}

=

n∑
i=r

(
n

i

)
F i(x)[1− F (x)]n−i

Minimum : F(1)(x) = 1− [1− F (x)]n

Maximum : F(n)(x) = [F (x)]n

f(r)(x) =
n!

(r − 1)!(n− r)!
F r−1(x)[1− F (x)]n−rf (x).
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Standard Uniform Parent – PDFs

f (x) = 1, 0 ≤ x ≤ 1.
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Figure 1: The probability density function (pdf) of the standard
uniform population and the pdfs of the first, second, third, fourth
and largest order statistics from a random sample of size 5.
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Standard Uniform Parent – CDFs

F (x) = x, 0 ≤ x ≤ 1.

E(X(r)) =
r

n + 1
; V ar(X(r)) =

r(n− r + 1)

(n + 1)2
.
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Figure 2: The cumulative distribution function (cdf) of the standard
uniform population and the cdfs of the first (minimum), third (me-
dian), and the largest (maximum) order statistics from a random
sample of size 5.
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Standard Normal Parent – PDFs

f (x; µ, σ) =
1√
2πσ

exp{− 1

2σ2
(x−µ)2},−∞ < x < ∞.

Here µ is the mean and σ is the standard deviation.

Standard Normal: µ = 0; σ = 1.
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Figure 3: The pdf of the standard normal population and the pdfs
of the first, second, third, fourth and the largest order statistics
from a random sample of size 5.
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Standard Normal Parent – PDFs of the Maxima
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Figure 4: The pdf of the standard normal parent and the pdfs of
the maximum from random samples of size n = 10, 50, 100, 200.
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Standard Exponential Parent – PDFs

f (x; λ) = λ exp{−λx}, 0 ≤ x < ∞.

Here mean = std. dev. = 1/λ; Std. Exponential: λ = 1.

Moments for the Max:

E(X(n)) ≈ log(n)− 0.5772; V ar(X(n)) ≈ π2/6 ≈ 1.64.
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Figure 5: The pdfs of the standard exponential parent and those of
the top 5 order statistics from a random sample of size 20.
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Standard Gumbel Parent – PDFs

F (x; a, b) = exp{− exp[−(x− µ)/σ]},−∞ < x < ∞.

Interesting Fact: X(n) is Gumbel with µ and σ/n.

Standard Gumbel: µ = 0, σ = 1;

E(X) = −γ(Euler’s constant) ≈ −0.5772;

Variance = π2/6.

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

x

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

48

49

50

Figure 6: The pdfs of the standard Gumbel parent and those of the
top 3 order statistics from a random sample of size n = 50.
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2 Order Statistics Related Quantities of

Actuarial Interest

Last Survivor Policy and Multiple Life Annuities

(a) Last Survivor Policy: Distribution of the Max-

imum; of interest will be the mean, standard deviation

and percentiles of the distribution.

(b) Multiple Life Annuities: Distribution of the rth

order statistic from a sample of size n; say the third to

die out of five.

Percentiles and VaR (Value at Risk)

Upper pth percentile of the Distribution of X . Here

X could be the random variable corresponding to profits

and losses (P&L) or returns on a financial instrument

over a certain time horizon. Let

xp = F−1(1− p),

where F−1 is the inverse cdf or the quantile function.

If p = 0.25, or p = .05 say – central order statistics,

p = 0.01 or p = 0.001 – extreme order statistics. VaR =

Value-at-Risk is generally an extreme percentile.
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Exceedances and Tail Probabilities

Exceedance is an event that an observation from the

population of X exceeds a given threshold c. Probability

exceeding or below a certain threshold c; probability of

ruin.

Pr(X > c).

When c is an extreme threshold, we need EVT.

Conditional Tail Expectation (CTE)

Suppose the top 100p% of the population are selected

and one is interested in the average of the selected group.

E(X|X > xp) = µp =
1

p

∫ ∞

xp

xf (x)dx.

Mean Excess Function

Suppose c is the threshold and the interest is the av-

erage excess above it.

E(X − c|X > c) = m(c) =
1

1− F (c)

∫ ∞

c

(x− c)f (x)dx

=
1

1− F (c)

∫ ∞

c

[1− F (x)]dx.
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3 Large Sample Distribution of Order Statis-

tics

• Central Order Statistics (Central Percentiles)

• Extreme Order Statistics

• Intermediate Order Statistics

The asymptotic theory of order statistics is concerned

with the distribution of Xr:n, suitably standardized, as

n approaches ∞. If r/n ≈ p, fundamentally different

results are obtained according as

(a) 0 < p < 1 (central or quantile case)

(b) r or n− r is held fixed (extreme case)

(c) p = 0 or 1, with r = r(n) (intermediate case).

In Cases (a) and (c) the limit distribution is generally

normal. In case (b), it is one of the three extreme-value

distributions, or a member of the family of Generalized

Extreme Value (GEV) distributions.
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Central Case

Result 1. Let 0 < p < 1, and assume r ≈ np,

and 0 < f (F−1(p)) < ∞. Then the asymptotic distri-

bution of

n
1
2(Xr:n − F−1(p))

is normal with zero mean and variance
p(1− p)

[f (F−1(p))]2
.

• With 0 < p1 < p2 < 1,(
n

1
2(Xr1:n − F−1(p1)), n

1
2(Xr2:n − F−1(p2))

)

is bivariate normal with correlation√
p1(1− p2)

p2(1− p1)
.

• These limiting means, variances and correlations can

be used to approximate the moments of central order

statistics.

• One can use this result to estimate and find confi-

dence intervals for central percentiles.

• One can find the large sample distribution of, e.g.,

the sample interquartile range (IQR).
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Intermediate Case

Result 2. Suppose the upper-tail of F satisfies

some smoothness conditions (von Mises conditions).

As r →∞ and r/n → 0, with pn = r/n,

nf (xpn)r
−1

2 (Xn−r+1:n − zpn)

is asymptotically standard normal.

• xp is the upper pth quantile.

• There are 3 types of von Mises conditions - tied to

EVT.

• Here and in the quantile case, one can obtain local

estimates of the pdf f using neighboring order statis-

tics.

Upper and Lower Extremes

None of the limit distributions is normal. There are 3

families of distributions that generate the limit distribu-

tions for the upper extremes, and for the lower extremes.

• A nonsymmetric parent can have different types of

limit distributions for the max. and min.
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• The limit distribution for the kth maximum is related

to, but different from that of the maximum.

Example. Consider a random sample from a stan-

dard exponential population. That is,

Pr(X ≤ x) = 1− exp(−x), x ≥ 0.

Then, for large n X(n)− log(n) ≈ Gumbel with location

parameter 0 and scale 1. That is,

Pr(X(n)−log(n) ≤ x) ≈ exp[− exp(−x)], for all real x.

In contrast, the sample minimum is exactly Exponential

with mean 1/n without any location shift. That is,

Pr(X(1) ≤ x) = 1− exp(−nx), x ≥ 0.

Other Upper Extremes

Pr(X(n−k)−log(n) ≤ x) ≈ exp[− exp(−x)]

k∑
j=0

exp(−jx)

j!
.

Other Lower Extremes

Pr(nX(k) ≤ x) ≈ 1− exp(−x)

k∑
j=0

(x)j

j!
, x ≥ 0.
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4 Sum of top order statistics & sample CTE

Suppose we are interested in estimating the CTE µp =

E(X|X > xp) where xp is the upper pth quantile and p

is not very small (say 5%) and let k/n ≈ p. Define the

sample CTE as

Dk =
1

k

n∑

j=n−k+1

X(j).

Result 3. For large n,
√

k(Dk − µp) ≈ N(0, σ2
p + p(xp − µp)

2).

where σ2
p = V ar(X|X > xp).

• On the right, xp, µp and σ2
p can be estimated from

the sample using the sample quantile X(n−k), Dk and

S2
D, the sample variance of the top k order statistics.

• The CTE and Mean Excess Function are related.

E(X|X > c) = c + m(c).
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5 Data Examples and Model Fitting

 
Capital Requirements Data 

Data Source: Steve Craighead, Nationwide Insurance, Columbus 
Values are negatives of the cap-requirements  
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Normal Quantile Plot

Quantiles     

 

100.0% maximum 89490993

 

99.5%  36103098

 

97.5%  11807434

 

90.0%  2782728.4

 

75.0% quartile 207245.65

 

50.0% median -2.094e+6

 

25.0% quartile -3.8605e6

 

10.0%  -5.1367e6

 

2.5%  -6.5963e6

 

0.5%  -8.0968e6

 

0.0% minimum -9.133e+6

  

Moments   

 

Mean -1.0354e6

 

Std Dev 5983789.7

 

Std Err Mean 189318.73

 

upper 95% Mean -663845.7

 

lower 95% Mean -1.4069e6

 

N 999

   

Bivariate Fit of mexf By (-capreq)_lag1 
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Danish Fire Insurance Claims Data 

Data Source: http://www.math.ethz.ch/~mcneil/

  
(Alexander McNeil 

 
Swiss Federal Institute of Technology) 

Original Source: Rytgaard (ASTIN Bulletin)  
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Quantiles (Note: Top 3 values were excl.)     

 

100.0% maximum 65.707

 

99.5%  32.402

 

97.5%  15.921

 

90.0%  5.506

 

75.0% quartile 2.964

 

50.0% median 1.775

 

25.0% quartile 1.321

 

10.0%  1.113

 

2.5%  1.020

 

0.5%  1.000

 

0.0% minimum 1.000

     

Moments (Top 3 excl.)    

 

Mean 3.1308527

 

Std Dev 4.6580174

 

Std Err Mean 0.1001319

 

upper 95% Mean 3.3272175

 

lower 95% Mean 2.9344879

 

N 2164

   

Bivariate Fit of mexf By loss_lag1 
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Missouri River Annual Maximum Flow Data for the Towns of  

Boonville and Hermann 
Data Source: US Army Corp of Engineers  
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Venice Annual Extreme Sea level Readings (1931-1981)  

Data Source: Reiss and Thomas (1997); XTREMES software.  
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Pairwise Pearson Correlations 
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Hour 2: EXTREME VALUES -

BASIC MODELS

1 Sample Maximum

For an arbitrary parent distribution, Xn:n, the largest in

a random sample of n from a population with cdf F (x),

even after suitable standardization, may not possess a

limiting distribution.

Result 3. If F (x) is such that (X(n) − an)/bn has

a limit distribution for large n, then the limiting cdf

must be one of just three types:

(Fréchet) G1(x; α) = 0 x ≤ 0, α > 0,

= exp(−x−α) x > 0;

(Weibull) G2(x; α) = exp [−(−x)α] x ≤ 0, α > 0,

= 1 x > 0;

(Gumbel) G3(x) = exp
(−e−x

) −∞ < x < ∞.

(1)
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Notes

• For a given parent cdf F there can be only one type

of G.

• Norming constants an and bn need to be estimated

from the data and formulas depend on the type of

G and parent cdf F . Convenient choices are given

below in Result 4.

• For the sample minimum, the limit distributions are

similar and have one-to-one relationship with the

family in (1).

• necessary and sufficient conditions for each of the 3

possibilities are known and are very technical. They

depend on the right-tail thickness of F .

• For many insurance applications, the right-tail is Pareto

like resulting in limiting Fréchet distribution.

• Simpler sufficient conditions are available for contin-

uous distributions.

• There are parent cdfs for which no (nondegenerate)

limit distribution exists for the max.
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Formulas for Norming Constants For the Maximum

Result 4. The location shift an and scale shift bn

are

(i) an = 0 and bn = x1/n if G = G1

(ii)an = F−1(1) and bn = F−1(1)− x1/n if G = G2

(iii) an = x1/n and bn = E(X − an|X > an) ≈
[nf (an)]−1 if G = G3

Domains For Common Distributions

Fréchet: F has infinite upper limit.

Cauchy; Pareto; Burr; Stable with index < 2; Loggamma.

Weibull: F Bounded Above.

Uniform; Power law (upper end); Beta.

Gumbel: Bounded or unbounded F .

Exponential; Weibull; Gamma; Normal; Benktander-type

I and type II.
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An Example: Pareto Distribution

Suppose the cdf is

F (x) = 1− x−α, x ≥ 1, α > 0.

Then

Pr(X(n) ≤ n1/αx) ≈ exp{−x−α}
for all x > 0.

Note: The α of the limit distribution of the maximum

is the α of the parent distribution representing the tail

thickness.

Another Example

Suppose the cdf is

F (x) = 1− (log(x))−1, x ≥ e.

Then you cannot normalize X(n) so that we get a nonde-

generate limit distribution.
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2 Generalized Extreme-Value Distribution

The Gk in (1) are members of the family of generalized

extreme-value (GEV) distributions

Gξ(y; µ, σ) =





exp
[
−(1 + ξ y−µ

σ )−
1
ξ

]
, 1 + ξ y−µ

σ > 0,

ξ 6= 0,

exp
(−e−[(y−µ)/σ]

)
, −∞ < y < ∞,

ξ = 0.

(2)

ξ is the shape, µ is the location and σ is the scale pa-

rameter.

Connections

G1(y; α) when ξ > 0 , σ = 1, µξ = 1 and α = 1/ξ,

G2(y; α) when ξ < 0, σ = 1, and α = −1/ξ

G3(y) when ξ = 0, σ = 1 and µ = 0.
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Moments of GEV

Take µ = 0, σ = 1.

When ξ 6= 0,

Mean =
1

ξ
[Γ(1− ξ)− 1] , ξ < 1;

Variance =
1

ξ2

[
Γ(1− 2ξ)− Γ2(1− ξ)

]
, ξ < 1/2;

Mode =
1

ξ

[
(1 + ξ)−ξ − 1

]
.

When ξ = 0, we have the Gumbel distribution and

Mean = γ = 0.5772.. = Euler’s constant;

Variance = π2/6; Mode = 0.

Quantile Function of GEV

Take µ = 0, σ = 1.

When ξ 6= 0,

G−1
ξ (q) =

1

ξ

{
[− log(q)]−ξ − 1

}

For the Gumbel cdf, G−1
0 (q) = − log[− log(q)].

28



3 Limit Distributions of the top Extremes

kth Order Statistic

Result 5.If F (x) is such that (X(n)− an)/bn has a

limiting cdf G, then, for a fixed k, the limiting cdf of

(X(n−k+1) − an)/bn is of the form:

G(k)(x) = G(x)

k−1∑
j=0

[− log G(x)]j

j!
.

Notes

• The same G and the same set of norming constants

work.

• The form of G(k)(x) has a Poisson partial sum form.

Pareto Example Contd.

Suppose the cdf is

F (x) = 1− x−α, x ≥ 1, α > 0.

Then

Pr(X(n−k+1) ≤ n1/αx) ≈ exp{−x−α}
k−1∑
j=0

x−jα

j!

for all x > 0.
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Limiting Joint Distribution of

the top kth Order Statistics

Result 6. If (X(n) − an)/bn has limiting cdf G and g

is the pdf of G then the k-dimensional vector
(

X(n) − an

bn
, . . . ,

X(n−k+1) − an

bn

)
(3)

has a limit distribution with joint pdf

g(1,...,k)(w1, . . . , wk) = G(wk)

k∏
i=1

g(wi)

G(wi)
, w1 > · · · > wk.

(4)

Pareto Example Contd.

Suppose the cdf is

F (x) = 1− x−α, x ≥ 1, α > 0.

Then (
X(n)/n

1/α, . . . , X(n−k+1)/n
1/α

)

has limiting joint pdf

g(1,...,k)(w1, . . . , wk) = exp{−w−α
k }

k∏
i=1

α

wα+1
i

,

for all w1 > · · · > wk > 0.
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Notes

• Result 6 is useful for making inference when only the

top k observations are available.

• The joint density in (4) will involve the location, scale

and shape parameters associated with the General-

ized Extreme Value Distribution of interest.

• Methods of Maximum Likelihood or Moments for the

Estimation of the parameters will involve this joint

density.

Discrete Parent Populations

While the results hold, no familiar discrete distribu-

tion is in the domain of maximal attraction (or minimal

attraction).
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4 Limiting Distribution of the Sample Mini-

mum

Result similar to Result 3 holds for the asymptotic dis-

tribution of the standardized minimum, (X(1) − a∗n)/b∗n.

Result 7.The three possible limiting cdfs for the

minimum are as follows:

G∗
1(x; α) = 1− exp

[−(−x)−α
]

x ≤ 0, α > 0,

= 1 x > 0;

G∗
2(x; α) = 0 x ≤ 0, α > 0, (5)

= 1− exp(−xα) x > 0;

G∗
3(x) = 1− exp (−ex) −∞ < x < ∞.

Clearly, G∗
i (x) = 1 − Gi(−x), i = 1, 2, 3. where Gi is

given by (1).

Notes

• Here G∗
2(x; α) is the real Weibull distribution!

• Norming constants can be obtained using Result 4

with appropriate modifications.

• Instead of dealing with the sample minimum from X

one can see it as the negative of the maximum from
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−X . Thus need to know only the upper extremes

well.

Pareto Example Contd.

Suppose the cdf is

F (x) = 1− x−α, x ≥ 1, α > 0.

Then

P (X(1) > x) = [1− F (x)]n = x−nα, x ≥ 1.

So

P{n(X(1) − 1) > y} = [1 +
y

n
]
−nα

, y ≥ 0.

This approaches exp(−yα) as n increases. So the limiting

cdf is G∗
2(x; α).

Joint Limiting Distribution of Max and Min.

Any “lower” extreme X(r) is asymptotically indepen-

dent of any “upper” extreme X(n+1−k). This result is

very useful for finding the limiting distributions of statis-

tics such as the range and the midrange.
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5 Distributions of Exceedances and the Gen-

eralized Pareto Distribution (GPD)

When F is unbounded to the right, there is an inter-

esting connection between the limit distribution for X(n)

for large n and the limit behavior as t → ∞ of stan-

dardized excess life (X − a(t))/b(t), conditioned on the

event {X > t}.
Balkema and de Haan (1974), and Pickands (1975)

characterize the family of limiting distributions for the

excess life.

Result 8. For a nondegenerate cdf H(x) if

lim
t→∞

Pr

{
X − a(t)

b(t)
> x

∣∣X > t

}
= 1−H(x)

then H(x) is a Pareto-type cdf having the form

Hξ(x) =





1− (1 + ξx)−
1
ξ , x ≥ 0, if ξ > 0

1− e−x, x ≥ 0, if ξ = 0

(6)

if and only if

Pr

(
X(n) − an

bn
≤ x

)
→ Gξ(x)

where Gξ is the GEV cdf given in (2) with the same

shape parameter ξ ≥ 0.
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Moments of GPD

When ξ 6= 0,

Mean =
1

1− ξ
, ξ < 1;

Variance =
[
(1− 2ξ)(1− ξ)2

]−1
, ξ < 1/2;

Mode =
1

ξ

[
(1 + ξ)−ξ − 1

]
.

Mean Excess Function = E(X−t|X > t) =
1 + ξt

1− ξ
, ξ < 1.

When ξ = 0, we have the standard exponential distri-

bution and

Mean = Standard Deviation = 1 = Mean Excess Function.

Quantile Function of GPD

When ξ 6= 0,

H−1
ξ (q) =

1

ξ

{
(1− q)−ξ − 1

}
.

For the Exponential cdf, H−1
0 (q) = − log(1− q).

Note

In addition to the shape parameter ξ the GPD has one
more parameter, namely the scale parameter σ.
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Hour 3: INFERENCE FOR EXTREME

VALUE MODELS

1 Generalized Extreme Value Distribution

Let Y be a random variable having a generalized extreme-

value (GEV) distribution with shape parameter ξ, loca-

tion parameter µ and scale parameter σ. The cdf is (see

(2))

Gξ(y; µ, σ) =





exp
[
−(1 + ξ y−µ

σ )−
1
ξ

]
, 1 + ξ y−µ

σ > 0,

ξ 6= 0,

exp
(−e−[(y−µ)/σ]

)
, −∞ < y < ∞,

ξ = 0.

The pdf is

gξ(y; µ, σ) =





1
σGξ(y; µ, σ)(1 + ξ y−µ

σ )−
1
ξ ,

ξ(y − µ) > −σ, ξ 6= 0,

1
σ exp

(−e−[(y−µ)/σ]
)
e−[(y−µ)/σ],

−∞ < y < ∞, ξ = 0.

(7)
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1.1 Maximum Likelihood Method

• For a given data (Y1, . . . , Ym) whose joint likelihood

L (i.e., probability density function) is known but for

an unknown parameter θ, we choose the parameter

value such that the likelihood L is maximized.

• It is generally chosen by looking at the first deriva-

tives with respect to θ (if θ represents a multiparam-

eter) of the logarithm of the likelihood (log L) and

equating to 0 and solving for θ. That is,

∂ log L

∂θ
= 0

is solved and the solutions are checked to see which

one corresponds to the largest possible value for the

likelihood L.

• This general recipe produces estimates called Maxi-

mum Likelihood Estimates (MLE) (say θ̂) that have

good large-sample properties under “regularity con-

ditions”.

• One condition is that the range of the data is free

of the unknown parameter we are trying to estimate

(GEV with ξ 6= 0 is a “nonregular situation”.)

• In particular, if m is the sample size and m is large,
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generally, √
m(θ̂ − θ) ≈ N(0, σ2

θ)

where σ2
θ is related to the average Fisher information

in the sample.

• This variance σ2
θ can be estimated by the reciprocal

of

− 1

m

∂2 log L

∂θ2

∣∣∣∣
θ=θ̂

Example. If we have a random sample of size m from

an exponential distribution with pdf

f (y; θ) =
1

θ
exp{−y/θ}, y ≥ 0,

the log-likelihood is given by

log L(θ) = −m log(θ)− 1

θ

m∑
i=1

yi.

Differentiating this with respect to θ and equating to 0

we get only one solution namely,

θ̂ = y,

the sample mean. Var(Y ) = θ2 and this is the recipro-

cal of the Fisher information per observation. We know

(central limit theorem) that
√

m(θ̂ − θ) ≈ N(0, θ2).
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2 Blocked Maxima Approach

Suppose we have a LARGE sample of size n from a dis-

tribution with cdf F whose sample maximum is in the

domain of maximal attraction. We are interested in

the large percentiles and upper tails of F .

Suppose we can divide the total sample into m nonover-

lapping blocks each of size r where r itself is big (say over

100). Note that n = m · r. Let Y1 be the largest in the

first block,..., Ym be the largest of the mth block. Then

Y1, . . . , Ym behaves like a random sample from the GEV

distribution with pdf g(y) given by (7).

Note: If we know that F is in the domain of attraction

of Gumbel, then ξ = 0 and hence we will have one less

parameter and we will satisfy the regularity conditions

for nice properties for the MLE to hold. We will consider

it first.

Gumbel Distribution

From (7) we can write the joint pdf of Y1, . . . , Ym. The

log-likelihood, log L(µ, σ) will be

−m log σ −
m∑

i=1

(
yi − µ

σ

)
−

m∑
i=1

exp

{
−

(
yi − µ

σ

)}
.
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We differentiate this with respect to µ and σ and ob-

tain two equations. Solving iteratively using numerical

techniques, we obtain the MLE (µ̂, σ̂). If m is large, the

vector is approximately normally distributed with mean

(µ, σ) and covariance matrix

1

m

6σ2

π2

(
π2

6 + (1− γ)2 (1− γ)

(1− γ) 1

)

where γ is the Euler’s constant 0.5772... This can be

used to provide confidence intervals for the parameter es-

timates.

GEV Distribution

The log-likelihood for the GEV parameters is given by

−m log σ −(1 + 1
ξ )

∑m
i=1 log

[
1 + ξ

(
yi−µ

σ

)]

−∑m
i=1

[
1 + ξ

(
yi−µ

σ

)]−1/ξ
,

provided ξ(yi − µ) > −σ for i = 1, . . . , m. Since the

range depends on the unknown parameters, the MLEs

may not have the usual nice properties.

40



Smith (1985)

• When ξ > −0.5, MLEs have the usual properties.

• −1 < ξ ≤ −0.5: MLEs are generally obtainable but

do not have the standard asymptotic properties.

• ξ < −1: MLEs are unlikely to be obtainable from

numerical techniques- likelihood is too bumpy.

• If ξ ≤ −0.5, we have a short bounded upper tail for

F - not encountered; Fréchet has ξ > 0.

• (ξ̂, µ̂, σ̂) is asymptotically normal with mean (ξ, µ, σ)

and the covariance matrix can be approximated us-

ing the inverse of the observed Fisher information

matrix.

Large Quantile Estimation

Let zp be the upper pth quantile of the GEV. Then its

estimate is given by

ẑp =





µ̂− σ̂

ξ̂
(1− yξ̂

p), if ξ̂ 6= 0

µ̂− σ̂ log(yp), if ξ = 0 (Gumbel),

where yp = − log(1 − p) is the upper pth quantile of

the standard exponential population. Confidence inter-

val for this percentile estimate can be computed using
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the covariance matrix of the MLEs of the individual pa-

rameters and linear approximations.

What we need are the estimates of the large quantiles

of F . Suppose

F (xp0) = 1−p0 or F r(xp0) = Pr(X(r) ≤ xp0) = (1−p0)
r.

Then with p = 1− (1− p0)
r we have

x̂p0 = ẑp

given above. For example, suppose we need to estimate

99.5th (= 1 − p0) percentile of the parent population

and we have used blocks of size 100. Then p = 1 −
(0.995)100 ≈ 0.39 and we use this percentile estimate ẑ.39.

Tail Probability Estimation

Pr(X > c) = 1− F (c)

= 1− [F r(c)]1/r

≈ 1− [Gξ(c; µ, σ)]1/r.

Use the estimates of ξ, µ, and σ in the above formula to

estimate the tail probability for the population.
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3 Inference Using Top k Order Statistics

Suppose n is large, but not large enough to make blocks

of subsamples of substantial size. One can think of using

the top k order statistics. If k is small when compared

to n, one can use the joint pdf given in Result 6, namely,

g(yk)

k∏
i=1

g(yi)

G(yi)
, y1 > · · · > yk

where g and G correspond to the GEV distribution. Thus,

the likelihood will be

exp

{
−

[
1 + ξ(

yi − µ

σ
)

]−1
ξ

}
k∏

i=1

1

σ

[
1 + ξ(

yi − µ

σ
)

]−1
ξ−1

,

where ξ(yi − µ) > −σ, i = 1, . . . , k. Using this like-

lihood, one can obtain the MLEs of ξ, µ, σ. These esti-

mates can be used to estimate the high percentiles of F

by using p = 1− (1− p0)
n and the ẑp given earlier.

Remarks

• If we have data of top k order statistics from several

blocks, say m, then we use the product of these like-

lihoods and determine the MLEs using the combined

likelihood.
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• How large k can we take? A tricky question. Larger

k means decreased standard error of the estimators,

but increased bias as we move away from G towards

F . Typically one increases k and looks at a plot of

the estimates of the parameters; when they stabilize,

one stops.

Quick Estimators of ξ

(a) Hill’s (1975) Estimator

• Assume ξ > 0 (Fréchet type). This means upper

limit of F is infinite.

ξ̂H =
1

k

n∑

i=n−k+1

log(X(i))− log(X(n−k)).

• This is the mean excess function for the log(X) val-

ues! log(X) values are defined for X > 0 and this is

the case for the upper extremes from large samples.

• The Hill estimator is also asymptotically normal.

• This is the MLE of ξ assuming µ = 0 and σ = 1.

The MLE of α = 1/ξ̂.

• Choice of k is determined by the examination of the

plot of (k, ξ̂H(k)).
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(b) Pickands’ Estimator

• Works for any ξ real.

ξ̂P =
1

log 2
log

{
X(n−k+1) −X(n−2k+1)

X(n−2k+1) −X(n−4k+1)

}
.

• Here k is large but k/n is small.

• Choice of k is determined by the examination of the

plot of (k, ξ̂P (k)).

Remark

There are other estimators that are refinements of Hill’s

and Pickands’. They have explicit forms and hence com-

putation is easy, but there are no clear preferences.
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4 Generalized Pareto Distribution –

Estimates Based on Exceedances

Let t be the threshold and we use only the Xi that exceed

t. Then, for t large, the exceedances Y ∗ = X−t have cdfs

that can be approximated by a Pareto-type cdf having the

form

Hξ(y; σ) =





1− (1 + ξ y
σ)−

1
ξ , y > 0; ξy > −σ, if ξ 6= 0

1− e−y/σ, y ≥ 0, if ξ = 0

(8)

If there are k exceedances above t, say y∗1, . . . , y
∗
k, the

MLEs of ξ and σ are obtained by using the log-likelihood

−k log(σ)− (1 +
1

ξ
)

k∑
i=1

log(1 + ξ
y∗i
k

)

and for the case ξ = 0 we have the MLE based on the

exponential distribution.

• The variance covariance matrix of (ξ̂, σ̂) is approxi-

mated by using the inverse of the sample Fisher in-

formation matrix.

• Let zp be the upper pth percentile of Hξ(y; σ). Then

an estimate of the upper pth percentile of F is given
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by

x̂p = t +
σ̂

ξ̂

{(
Pr{X > t}

p

)ξ̂

− 1

}

where we assume Pr{X > t} > p and Pr{X > t} is

estimated by the sample proportion exceeding t.

• Choice of the threshold t - how close the exceedances

are modeled by the Generalized Pareto distribution.

• Such data are called Peaks Over Threshold (POT)

data.
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5 General Diagnostic Plots

5.1 QQ plots

Plots of Sample Order Statistics against the Quantiles of

the fitted/hypothesized distribution. Generally(
X(i), F

−1( i
n+1)

)
for i = 1, . . . , n, is plotted. Sometimes

(i− 1
2)/n is used in place of i

n+1. Linear trend indicates

good fit.

5.2 Mean Excess Function Plots

Plots of (k, en(k)), k = 1, 2, ... that tell us how close the

data agrees with the assumed distribution. Here en(k) is

the sample mean excess function

en(k) =
1

k

n∑

i=n−k+1

X(i) −X(n−k) = Dk −X(n−k).

5.3 Plots for Choosing the top k Order Statistics

Plots of (k, θ̂(k)) where θ̂(k) is the estimate of the param-

eter θ based on top k order statistics; it is accompanied

by standard errors of the estimate. Used to examine the

trade-off characteristics between bias and variance, and

choose k for making inference.
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6 General Remarks

1. The distribution of the maximum of a Poisson num-

ber of IID excesses over a high threshold is a GEV.

(Crucial for stop-loss treaties.)

2. Relaxing Model Assumptions- Adjusting for Trend.

3. Stationarity with mild dependence structures.

4. Non-identical but independent, with no dominating

distribution.

5. Linear processes (ARMA etc.)
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7 Examples

Extreme Sea Levels in Venice Data

Largest annual sea levels from 1931-1981.

a) Maxima of blocks of n = 365 days.

b) Scatterplot and Adjusting for trend.

c) Fitting GEV.

d) Estimating large percentile for 2005.

Reference: Ferreiras article in Reiss and Thomas (1997);

XTREMES software.

50



8 Computational/Software Resources

• XTREMES.

A free-standing software that comes with Reiss and

Thomas’ book (academic edition- with limited data

capacity). Professional edition is also available. Web-

site:

http://www.xtremes.math.uni-siegen.de/xtremes/

• Alexander McNeil’s Website:

http://www.math.ethz.ch/ mcneil/software.html

Has free software attachment that works with S-PLUS.

• http://www.maths.bris.ac.uik/ masgc/ismev/summary.html

Associated with Coles’ book.
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