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DISCRIMINATION BETWEEN REGRESSION MODELS
TO DETERMINE THE PATTERN OF ENZYME SYNTHESIS
IN SYNCHRONOUS CELL CULTURES

D. A. WiLL1AMS
Department of Statistics, University of Edinburgh, Scotland

SUMMARY

Alternative theories for the synthesis of enzyme during the cell cycle lead to two regres-
sion models for the increase in enzyme concentration in synchronous cultures of yeast cells.
One model is a segmented linear regression with three segments; the alternative is a smooth
exponential. The analysis of observations from a series of experiments designed to dis-
criminate between the alternative models is discussed. Methods are described for esti-
mating the segmented linear regression and for determining by simulation the distributions
under the two models of the discriminating criterion, the ratio of maximised likelihoods.
The consequences of non-validity of some of the assumptions made in setting up the regres-
sion models are investigated.

1. INTRODUCTION

The pattern of enzyme synthesis during the cell cycle is of considerable
interest because of the light it throws on the regulation and sequence of
chemical changes throughout the cycle. Many basic processes in the cell have
to double in capacity during the cell lifetime and there is evidence that many
processes do so continuously and exponentially. The majority of individual
enzymes are synthesised only for a limited period of the cell cycle, the period
varying from enzyme to enzyme. Some enzymes, however, are synthesised
continuously throughout the cell cycle and previous work with bacteria has
suggested that with such enzymes a pattern of synthesis alternative to the
exponential is followed in which the rate of synthesis doubles sharply at some
characteristic point in the cell cycle, remaining at a constant level both before
and after this point.

This paper describes the methods used to analyse the data from a series of
experiments which were carried out to determine whether this alternative
pattern of synthesis applied to 3 enzymes, sucrase, alkaline phosphatase and
acid phosphatase, which are synthesised continuously during the cell cycle of
the yeast Schizosaccharomyces pombe.

The biological implications of this work and the experimental details are
discussed more fully by Mitchison and Creanor [1969].

2. THE EXPERIMENTS

Information on the pattern of enzyme synthesis is obtained by studying
the changes in concentration of the enzyme within a synchronous cell culture.
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A perfectly synchronous culture is one in which, at any time, all cells are at the
same growth stage. In particular the cells will divide in synchrony. In
practice a synchronous culture is obtained by centrifuging a tube of cells,
which causes the cells to arrange themselves along the tube according to cell
size, and selecting a cross section of cells of uniform size. This produces a
culture which is approximately but not perfectly synchronous. Moreover the
culture will become less synchronous during its growth because of the natural
variation in the generation time of the cells. The model proposed in section 3
relates strictly to cultures that remain perfectly synchronous, but the conse-
quences of imperfect synchrony have been investigated and are described
briefly in section 9.

Each culture was allowed to grow in a suitable medium for approximately
6 hours. At 5-minute intervals, small samples were taken; between successive
samplings the culture was stirred to ensure that each sample was a random
portion. The cells from each sample were frecze-dried and were assayed inde-
pendently to determine the enzyme concentration. In any experiment only
one of the 3 enzymes was investigated.

The generation time of these cells is about 2.4 hours. The observations,
approximately 70 in number, therefore extended over 3 cycles covering about
half of the first cycle, all of the second cycle, and most of the third cycle.

3. MODELS FOR THE OBSERVATIONS

If the pattern of enzyme synthesis is such that the rate of synthesis doubles
at a characteristic point during the cell cycle, then the rate of increase of
enzyme in a synchronous culture will follow a step function, with one step per
generation. The observed enzyme concentrations which measure the cumu-
lative production of enzyme will follow the integral of the step function, that
is, a curve formed by a series of linear segments.

If enzyme synthesis increases smoothly and exponentially during the cell
cycle then the observed enzyme concentration will follow an exponential curve.

Variation about the true curve will arise from three main sources:

(1) Variations over time due to disturbance of the culture, deterioration
of the medium, ete.

(2) Sampling errors due to lack of uniformity of the culture.

(3) Assay errors in determining the enzyme concentrations of the samples.

Variation due to (1) will be time-dependent. Variation due to (2) and (3)
should be independent in successive samples but variances may increase with
increase in the enzyme concentration. The errors about the true curve could
therefore be heteroscedastic and not completely independent. Nevertheless I
have followed the common practice of assuming that the errors are normally
and independently distributed with constant variance. The effect of the non-
validity of these assumptions on the results of the analysis is discussed in
section 8.

The problem is thus regarded as one of diseriminating between two regres-



REGRESSION MODELS OF ENZYME SYNTHESIS 25

sion models. If y; is the observed enzyme concentration at time ¢; the two
models are
(1) Segmented Model

106, &) + e 0= (a,8,,8:,08s,T,,T0),

I

Ui
where
a- Bt for 1 <T,
a+ BT, + Bt —T)) for T, <t<T,

=a4 BT, + BT, —T) + Bt —Ty) for T, < ¢,

and the e; are independently distributed N(0, ¢%). T, and T, are the rate
doubling times, Ty, — T equals the generation time. If the medium in which
the cell culture grows does not change materially over the duration of the
experiment, then B, : B, : 8 should be in the ratios 1 : 2 : 4.

16, 9)

l

(2) Smooth Model

Y = g(lk) ta) + €, ‘I{ = (a) b; C),

where g(i, t) = a + b exp (ct) and the ¢ are independently distributed
N(0, o2).

The unusual feature of this problem is the presence of discontinuities in the
derivative of the segmented model occurring at unknown points, 7', and T'» , in
the range of the independent variate . This raises difficulties in fitting the
segmented model to the data and in discriminating between the alternative
regression models.

4. ESTIMATION OF THE SEGMENTED MODEL

The estimation of segmented regressions has been discussed by Hudson
[1966]. The difficulties arise because at each of the observation times ¢; the
likelihood function is not differentiable with respect to 7'y and T, . In any of
theintervals t; < Ty < tjer, b < To < b4; there may exist a local maximum
(or supremum) of the likelihood function. Standard iterative procedures for
obtaining maximum likelihood estimates are not suitable and it becomes
necessary to evaluate the local supremum for each pair of intervals in turn.
Hudson develops algorithms for this but discusses in detail only the case of 2
linear segments. The following procedure for fitting 3 linear segments
merely extends Hudson’s approach.

Let there be n observations (¢; , ¥;) ordered so that the ¢; increase with <.
Consider the rectangle in the (T';, T.) plane defined by ¢; < t; < T) < tj1 <
b < Ty < ey < t,. Let the 3 segments ¢, to ¢; , t;41 to & , and &, to &,
contain n; , n, , and n; points, respectively. Let the means of the ¢; and their
corrected sum of squares for the 3 segments be #; , &, & and S, , S, , and S; .

Suppose that unconstrained lines fitted to the 3 segments by least squares
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have slopes 8% , 8% , and 8% , that they intersect at 7% and 7% , and that the
total residual sum of squares is R*.

It is then a straightforward exercise in least squares estimation under linear
constraints to show that the residual sum of squares R(T, , T,) about fitted
lines constrained to meet at (T, T,) is given by

R(Tl ) Tg) = R* _I" m,A—lm,

where
m = [(ﬁ’i — BT, — Tﬂ;)}
% — DT — T%)
U = Ay = _nlz (= T,‘)S'(zt'2 —T) ’
=t 2 o G 1

Ift, < T% <tjppand t, < T% < ther , then R(T, , T,) is a minimum,
equal to R*, at (T% , T%). If not, then R(T,, T) achieves its least value at
some point on the boundary of the rectangle whose corners are (f; , %),
(ie1 s t)y (i) teer), and ((;41, te1). I have been unable to develop a simple
method for determining where on the boundary the least value of R(T';, T') is
attained. For the enzyme concentration data, however, n is large, about 70,
and it suffices to determine the maximum likelihood (ML) estimates of
(T, , T,) to the nearest (¢;, t.). Values of R have therefore to be calculated
only for the 4 corners of the rectangle.

To find the overall ML estimate of (T, , T.) the above investigation is
repeated for all §, k. The calculations can be made more efficient by the
following measures:

(1) First obtain the value of R(T;, T) for some initial estimate of (T';, T'),
from a graphical plot of the (¢; , y:) or otherwise. Call this R, .

(2) The range of values of j and k investigated can be restricted after
study of the graph. If it were necessary to investigate values of j and k for
whichj < 2o0rk >n — 2ork — j < 2, the calculations described above would
require modification.

(8) Cyecle increases of k within increases of 5. Means and sums of squares
and products of ¢ and y do not then have to be recalculated completely but
are merely adjusted for the addition or subtraction of a single observation.

(4) For each j, k first calculate B*. If this is greater than R, proceed to
next interval.

(5) If R* is less than R.;, calculate (T%# , T#). If this lies within the
rectangle, then (7% , T%) is the new best estimate, and B* becomes the new
R.i. . Proceed to the next interval.
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(6) If (T% , T%) does not lie within the rectangle calculate R(¢; , ). If
R(t; , 1) is less than R, , then (¢; , ¢,) is the new best estimate and R(¢; , &)
becomes the new R.;, . Proceed to the next interval.

Note that the fitting of segmented regressions to a large number of
observations requires considerable computing time. This becomes a severe
restraint on the number of simulations one can reasonably perform when
discriminating between regression models by the method discussed in the
following section.

5. DISCRIMINATION BETWEEN REGRESSION MODELS

The two regression models are separate in the sense that neither model is
a special case of the other. Cox [1961] has discussed the general problem of
testing separate families of hypotheses. He uses as discriminating criterion
the ratio of maximised likelihoods A, which here reduces to the ratio of the
residual sums of squares, i.e.

residual sum of squares about fitted segmented model

residual sum of squares about fitted smooth model

To use this criterion knowledge is needed of the distributions of A under
the assumption in turn that each of the two models is true. The distribution
of A depends not only on the form of the true model but also on the parameters
which are unknown. If minimal sets of sufficient statistics for the parameters
exist an exact test would use the conditional distributions of A given the
observed values of the sufficient statistics. In the absence of sufficient
statistics the distributions of A could be determined conditional on the ML
estimators but this approach would be intractable both analytically and by
simulation. The alternative adopted here follows Cox ([1961] §8) and uses
distributions of A assuming that the parameters take values equal to those
estimated by maximum likelihood from the data. This approach is justified
in general by the asymptotic sufficiency of the maximum likelihood estimators.

For each model in turn, therefore, the question is asked ‘what is the
distribution of A if the model is assumed true with parameters as estimated
by maximum likelihood from the data?” These distributions are denoted by
Ayand A, .

Cox developed asymptotic expressions for the expectation and variance of
log N and established that log N is asymptotically normal. His results,
however, assume that the likelihood function is differentiable with respect
to all of the parameters and are therefore not valid for our problem. In
place of his results I have used simulation to indicate the ranges of the
distribution of A.

Let & and § be the ML estimates from the observations of the regression
parameters under the two models. Let 6% and ¢ be the estimates of residual
variance obtained by dividing the residual sums of squares by n — 6 and n — 3,
respectively.
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On the assumption that the segmented model is true a set of simulated
enzyme concentrations is obtained by calculating f(8, t;) + e; , where the e;
are a set of pseudo-random normal deviates with variance 6% . To these
simulated concentrations both regression models are fitted and the ratio \ of
the residual sums of squares calculated. This is repeated 10 times using
different sets of random normal deviates to obtain 10 observations, which are
denoted by Ay fork = 1, 2, -+, 10, on the distribution A, .

Similarly, 10 observations \,; on the distribution A, are obtained by fitting
both regression models to simulated concentrations g@, t)) + e;, where the e;
are further sets of pseudo-random normal deviates with variance 42 .

Thus 10 observations are made on each of the two distributions A, and A, .
The mean of A, is less than the mean of A,. The further observation )\, , the
value of \ obtained by fitting both regressions to the data, is to be allocated to
one of the two distributions.

Let m; ,m,, s;, and s, be the means and standard deviations of the \;, and
the A, , respectively. Let d; = max {m, -+ 2s, , max A} and d, = min
{m, — 2s, , min A;}.

Then I regard A\, as a possible observation from A, if \, < d, , and as a
possible observation from A, if Ay > d, . This leads naturally to 4 possible
conclusions:

if N <d;, N <d, thetrue model is segmented,
No > d;, N > d, the true model is smooth,
N > ds, N < d, neither model is true,
N < ds, N > d, nodiscrimination between the two models is possible.

No justification of this rule in terms of misclassification probabilities is
claimed, for the form of the distributions A; , A, is not known.

6. NUMERICAL EXAMPLEK

The above analysis is illustrated using as an example the concentration of
sucrase from a synchronous culture. A graph of the concentrations is given
in Figure 1.

The parameters of the fitted segmented model were T, =226,T, = 52.7,
& = 74.6, B, = 2.55, B, = 4.43, B, = 10.50, and &, = 5.33. The residual
sum of squares was 1901.

The parameters of the fitted smooth model were ¢ = 16.65, b = 63.38,
¢ = 0.02711, and 6, = 7.14. The residual sum of squares was 3571.,

The ratio of residual sums of squares was A\, = 0.532.

10 sets of concentrations were simulated assuming the segmented model
true by adding random normal deviates with standard deviation ¢, = 5.33
to the fitted expected concentrations. The 10 A, values were:

0.549 0.426 0.437 0.344 0.508 0.551 0.461 0.490 0.423 0.536.

Similarly, by adding sets of random normal deviates with s.d. é, = 7.14
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FIGURE 1

THE ACTIVITIES OF SUCRASE (’I‘O WHICH ENZYME CONCENTRATIONS ARE PROPORTIONAL) IN
SAMPLES FROM A SYNCHRONOUS CULTURE. THE FITTED SEGMENTED LINEAR REGRESSION
IS SHOWN.

to fitted expectations 16.65 + 63.38 exp (0.02711¢;) and fitting both regression
models to these simulated concentrations the following 10 values of N
were obtained:

1.213 1.227 1.269 1.183 1.264 1.000 0.998 1.044 0.951 1.031.

The value of A calculated from the data, 0.532, lies within the range of
the A\, but well outside the range of the A, and I conclude that the true
model is segmented. In fact, in the majority of the experiments the conclu-
sion was as obvious as in this example and clearly valid irrespective of the
form of the distributions A, and A, .

7. USE OF ASYNCHRONOUS CONTROLS AND A SUMMARY OF THE
EXPERIMENTS

Initially the results from only 3 or 4 experiments on each of the 3 enzymes
were available and the observations were found to favour the segmented model
in most but not all cases. It was clearly necessary to obtain further sets of
observations on synchronous cultures and also, for two reasons, to obtain
similar observations on asynchronous cultures which would act as controls.
Firstly, the segmented form of the concentrations was possibly caused not by
the synchrony of the cells but by some feature of the experiment such as
the process of centrifuging. Secondly, the observations were possibly better
fitted by the segmented model because the smooth model had less freedom-of-
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fit. The slopes of the fitted segmented model were not constrained to be in
the ratio 1 : 2 : 4 because slight changes may have occurred in the culture
medium during growth which could alter these ratios. The exponential curve
does not allow for such changes and can be at best only an approximation to
the form of smooth increase in enzyme concentration. If enzyme concentra-
tion increase in the synchronous cultures was smooth but not exactly exponen-
tial, then the segmented model, because of its greater freedom, could have
given the better fit. Asynchronous cultures were formed by remixing all of
the cells in a tube after centrifuging and enzyme concentrations were deter-
mined and analysed exactly as for the synchronous cultures.

For two of the enzymes, alkaline phosphatase and acid phosphatase, the
observations from asynchronous cultures favoured the smooth model in only a
minority of the experiments. Study of the graphs of the enzyme concentration
suggested that this was caused by the failure of the exponential to describe the
smooth curve, rather than by true segmentation, and that a more flexible
form of smooth curve was needed. A polynomial of degree 5 was chosen
because this gives an easily fitted family of smooth curves which, from con-
sideration of the magnitude of the parameter ¢ and the power series expansion
of g(i, t) over the range of observations, approximately includes the exponen-
tial as a special case. The exponential was therefore replaced by a polynomial
in ¢ of degree 5 and the experiments on these 2 enzymes from both synchronous
and asynchronous cultures were completely reanalysed, the analysis being
exactly as before except for the change in the form of g(¥, t). The polynomial
will be an unsuitable model for enzyme concentration increase unless the
range of observations lies between a minimum and the adjacent point of
inflexion. No constraints were imposed on the fitted parameters of the poly-
nomial but it was confirmed by inspection that the first and second differences
of the fitted values were all positive.

This change in ¢g(i, t) had the desired effect of altering the conclusions
about the asynchronous cultures in favour of the smooth model, while not
affecting the conclusions about the synchronous cultures. The sucrase
experiments were not reanalysed.

The final results of the analyses of all the experiments is given in Table 1.
From these results I conclude that there is strong evidence that the concentra-
tions of all 3 enzymes follow the segmented model in synchronous cultures
and, therefore, that there is a characteristic point in the cell cycle at which
the rate of synthesis of enzyme doubles.

8. EFFECT OF HETEROSCEDASTIC AND NON-INDEPENDENT ERRORS

The sources of variation about the regression models were discussed in
section 3; heteroscedastic and non-independent errors were anticipated. This
is confirmed by an examination of the residuals. In most experiments there
is evidence that variation about the regression model increases with expected
concentration. In several experiments also there is evidence for some serial
correlation between the residuals, the first autocorrelation being usually
positive but rarely greater than 0.3. The simulations, which have assumed
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TABLE 1

SUMMARY OF THE 39 EXPERIMENTS ANALYSED. THE TABLE GIVES THE
NUMBER OF EXPERIMENTS IN EACH CATEGORY.

Model favoured by the observations

Enzyme Culture Segmented  Smooth Neither No diserimination

Sucrase Synchronous 6 1 2 0

Asynchronous 1 3 1 0
Alkaline Synchronous 5 1 0 1
Phosphatase  Asynchronous 0 6 0 1
Acid Synchronous 5 0 0 0
Phosphatase  Asynchronous 1 4 0 1
Total Synchronous 16 2 2 1

Asynchronous 2 13 1 2

that errors are independently distributed with constant variance, will be
irrelevant if the distributions A, and A, are critically dependent on these
assumptions.

A limited investigation of this, for A, only, has been made. A representa-
tive set of parameters for 6 was chosen and, using a set of 70 pseudo-random
normal deviates with unit variance, which we denote by «; , 70 values of
7(0, ©) 4+ €; were constructed in 3 ways:

(a) control e = Kz, ,
(b) heteroscedastic e, = K,f(®, 7)z; ,
(¢) correlated e; = 0.333 e;_; + 0.943K,x; for 7 > 1, ¢, = Ky, .

K, was taken as 6, and K, , K; chosen so that the expected residual sum of
squares to the fitted segmented model was the same for all 3 cases. To each
of the 3 sets of simulated observations were fitted the segmented, exponential,
and polynomial regressions, and values of A for both types of smooth model
were calculated. This was repeated 40 times using different sets of random
deviates.

The distributions A, , as represented by the 40 sets of observations, were
very similar for all 3 types of error. The means and standard deviations
(Table 2) suggest that the conclusions made in discriminating between
regression models were valid even though the assumptions of independent
and homoscedastic errors were not.

9. THE EFFECT OF IMPERFECT SYNCHRONY

The synchronous cultures used in these experiments were not perfectly
synchronous. Observations on cell numbers indicated that the cell popula-
tions took about 1 hour to double in size at the first division. The question
arises as to whether the discrimination should still have favoured the seg-
mented model when the synchrony was as imperfect as this. If not, the
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TABLE 2
MEAN AND STANDARD DEVIATION OF 40 OBSERVATIONS FROM Ay UNDER
DIFFERENT ASSUMPTIONS ON THE DISTRIBUTION OF ERRORS
ABOUT THE SEGMENTED MODEL

g(t) Exponential g(t) Polynomial
Errors Mean S. D. Mean S. D.
Homoscedastic, independent 0.629 0.076 0.693 0.084
Heteroscedastic, independent 0.623 0.090 0.692 0.093
Homoscedastic, correlated 0.613 0.095 0.692 0.105

conclusions may lead to the conjecture that the rate doubling times are more
synchronous than the cell division times.

The effect of this asynchrony is to cause a rounding-off of the intersections
of the segments. Visually, a segmented curve with corners rounded off to a
degree corresponding to a variation in rate doubling times over 1 hour looks
very similar to a strictly segmented curve, particularly when random variation
is added. Simulations confirmed that the distribution A, is altered very little
by rounding off the corners of the true segmented model to this degree.

Although the synchrony is imperfect the method of diserimination would
still therefore favour the segmented model.

DISCRIMINATION ENTRE MODELES DE REGRESSION POUR DETERMINER
LA DESCRIPTION DE LA SYNTHESE ENZYMATIQUE DANS DES
CULTURES SYNCHRONES DE CELLULES

RESUME

Des théories alternatives pour la synthése enzymatique pendant le cycle cellulaire
ménent & deux modéles de régression rendant compte de ’augmentation de la concentration
de 'enzyme dans des cultures synchrones de cellules de levure. L’un des modéles est une
régression linéaire en trois segments de droite; ’autre est une exponentielle bien reguliére.
L’analyse des observations & partir d’une série d’expériences montrées pour discriminer
entre I'un et 'autre modéles est discutée. On décrit des méthodes pour estimer la régression
linéaire segmentée et pour déterminer sous les deux hypothéses par simulation les distribu-
tions du critére de discrimination (rapport des vraisemblances maximisées). On a examiné
les conséquences de la non validité de quelques unes des hypotheses faites pour batir les
modéles de régression.
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