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The jackknife - a review

By RUPERT G. MILLER
Department of Statistics, Stanford University, California

SUMMARY

Research on the jackknife technique since its introduction by Quenouille and Tukey is
reviewed. Both its role in bias reduction and in robust interval estimation are treated. Some
speculations and suggestions about future research are made. The bibliography attempts to
include all published work on jackknife methodology.

Some key words : Bias reduction; Interval estimation; Jackknife; Pseudo-value; Robustness.

1. INTRODUCTION

Quenouille (1949) introduced a technique for reducing the bias of a serial correlation
estimator based on splitting the sample into two half-samples. In his 1956 paper he general-
ized this idea into splitting the sample into g groups of size k each, n = gh, and explored its
general applicability.

LetY,,...,Y, beasample of independent and identically distributed random variables. Let
8 be an estimator of the parameter 6 based on the sample of size n. Let 8_; be the corres-
sponding estimator based on the sample of size (g — 1)k, where the ith group of size # has been
deleted. Define

G, =g0—(g—-1)0_;, (i=1,...,9). (1-1)

The estimator

6=

M=

1 19
=30, =g0—-(9g-1)> %0, (1-2)
g i=1 gi=1

has the property that it eliminates the order 1/n term from a bias of the form

E(f) = 6 +a,/n+0(1/n?).

In an abstract Tukey (1958) proposed that the g values (1-1) could be treated as approxi-
mately independent and identically distributed random variables in many situations. The
statistic

(1-3)

should then have an approximate ¢ distribution with g—1 degrees of freedom and
constitute a pivotal statistic for robust interval estimation. In unpublished work Tukey
subsequently called the g values (1-1) pseudo-values and created the name jackknifed
estimator for (1-2) in the hope that it would be a rough-and-ready statistical tool.

The research which has substantiated, amplified, and built upon this original work is
surveyed in this article. Since there are the two different aspects of the jackknife technique,
namely, bias reduction and interval estimation, the survey is divided along these lines into

I-2
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separate sections, §§2 and 3, respectively. Section 4 describes some additional develop-
ments, and §5 contains some speculations and suggestions about future research on the jack-
knife. The bibliography attempts to include all published work on jackknife methodology.

Although it will be necessary to mention the case of general g and  at certain points, the
presentation in this article centreson g = nand - = 1. Much of the research on the jackknife
has been devoted to this special case. It is the most appealing because it eliminates any
arbitrariness in the formation of the groups, and it is probably the best form of the jackknife
to use in any problem. For large data bases, however, this may be computationally not
feasible. In most if not all instances any result proved for the case & = 1 can be extended to
h>1.

2. B1As REDUCTION
2-1. Second-order jackknife

In 1956 Quenouille also gave a way to eliminate the order 1/n2 term from a bias by jack-
knifing with weights #2 the jackknifed estimator. The second-order jackknife estimator is
02— (n—1)224_/n

nt—(n—1)2
where §_; is (1-2) applied to the sample of size n — 1 with the jth observation removed. In
terms of the original estimator # the second-order jackknife is expressible as
2

6o =(n—1)"1 [n30— (2n2—2n4+1) (n—1) (% 20_,.> +(n—1)%(n—2) {n(TT) iz<;j0_ﬁ}],
(2-2)

where 0_4,. denotes the original estimator applied to the sample of size » — 2 with the 7th and
jth observations removed.

If E() = 0+ a,/n+a,/n?, then E(G®) = 6+ 0(1/n3), but 6@ is not unbiased. Schucany,
Gray & Owen (1971) suggested modifying the weights to achieve complete unbiasedness
when the bias has only first- and second-order terms in 1/n. Their estimator, which has
simpler weights than Quenouille’s (2-2), is

forx = % [nzo— 2(n—1)2 (_71; zo_i) +(n— 2)2{ 2 b o,i,.}]. (2-3)

n(n— 1) i<j

6@ = (2-1)

These ideas can be extended to eliminate even higher-order bias terms if one so desires.
The generalization of Quenouille’s coefficients in (2-1) should be clear, and the extension of
(2-3) is a special case in the next subsection.

2-2. Generalized jackknife

In the same 1971 paper Schucany, Gray & Owen generalized the jackknife technique to
handle more general forms of bias. Suppose there are two estimators 4, and 8, based on all
or parts of the data for which the biases factorize in the following manner:

) E(8,) = 6+f,(n)b(6), E(8,) = 0+f5(n)b(6). (2-4)
Then the estimator
6, &,
0% = _T_21_ (2-5)

fi(n)  fa(n)
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is exactly unbiased. The usual jackknife (1-2) for g = = fits into the form (2-5) with &, = 8,
0y = ZO_yfn, fy(n) = 1/n and fy(n) = 1/(n—1).

To eliminate k separate terms in the bias, each of which factorizes into distincet functions
of » and 0, k& + 1 estimators are required whose expectations are of the form

B, =0+ é}l Fum)b,(0) G =1,...,k+1). (2:6)

The functions f;;(n) are assumed to be known. The generalization of (2-5) is

0, .. O
fuf”) fk+1:1(n)

% = flk‘(n) fk+1:k(n)
1 1 ’

fugn) oo fk+1: 1(n)

flk-(n) oo fk+1:k(n)

The refined second-order estimator (2-3) is a special case of (2:7) with 8, = 8, 8, = Z6_;/n,
0,=2%;; 0_i;[{in(n— 1)} and f;(n) = 1/(n—i+1)ifori =1, 2, 3and j = 1, 2. To remove the
next higher-order bias term 1/n8, the determinants in (2:7) are simply enlarged to include
Oy = 6%, 0_iyfin(n—1)(n—2)} and fis = 1/(n—i+1)% (i = 1,...,4).

Adams, Gray & Watkins (1971) investigate the effect of § and §®* on a general bias term
from an asymptotic point of view. In a further paper (Gray et al., 1972) the same authors
point out an interesting connexion between the jackknife technique and the e;-transform-
ation which is one of a variety of methods in numerical analysis for increasing the speed of
convergence of a series. For a slowly converging series of numbers

(2:7)

Su= (28)
the transformation
S, —p(n)S,_
ex(S,) = =B (p()n) : (2:9)

for p(n) = a,[a,_, + 1willincrease the rate of convergence to the limit S, in many instances.
The analogy is S, ~ E(8), S,_; ~ E(Z0_;/n), S, ~ 6, p(n) ~ (n—1)/n, and similar analogies
exist between the generalizations of the e,-transformation and the jackknife. The jackknife
estimate is the linear extrapolation to 0 = 1/oo from & plotted at 1/n and Z8_;/n at 1/(n — 1).

In their book Gray & Schucany (1972) have amalgamated and expanded the results from
these aforementioned papers on bias reduction and included some of the material from the
next section on interval estimation.

In any specific problem there are usually alternative methods for reducing the bias. For
example, in the problems of §§3-3-3-5 estimation of the quadratic term in the Taylor
expansion of f will also eliminate the order 1/» bias. Alternative estimators are also cited in
the next section. A systematic comparison of the jackknife’s effectiveness in bias reduction
in competition with alternative procedures over a wide class of problems has not been made.
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2-3. Main application: ratio estimation

Ratio estimation occupies an important place in sample surveys, and since the simple
estimator Y /X is biased, this has become an area of application for the jackknife technique.
For a sample (X;,Y;) (¢ = 1, ...,n) of paired random variables with E(X;) = g and E(Y;) = 9,
the problem is to estimate @ = 7/u. In sample surveys the auxiliary population mean x may
be considered known, or at least estimated from a much larger sample, in which case § = Gy,
where fis a ratio estimate based on (X, Y;) (¢ = 1, ..., n), is often a more precise estimator of
7 than the less sophisticated estimator Y. There are also many instances of ratio estimation
in scientific problems which have no connection with sample surveys.

Durbin (1959) pioneered application of the jackknife to ratio estimation by studying the
behaviour of (1-2) with g = 2 in the model

Y, =a+pX;+e, (2-10)

where the e; are independently, identically distributed with either a normal or gamma dis-
tribution. Durbin established that, neglecting terms of O(n—%), the jackknife estimator has
both smaller bias and smaller variance than the simple estimator Y /X for the normal dis-
tribution. In the case of the gamma distribution expansions are not necessary, and Durbin
proved that for gamma distributions with coefficient of variation less than } the jackknife
reduces the bias, increases the variance, but reduces the mean squared error in comparison
with Y/X.

Rao (1965) proved that the optimum choice of g in the jackknife is g = » for the normal
auxiliary distribution. Through a combination of theoretical and numerical work J.N. K.
Rao & Webster (1966) demonstrated that this also holds true for the gamma distribution.
In an abstract Chakrabarty & J. N. K. Rao (1968) announced similar results on the estimate
of the jackknife variance.

The reader should not conclude from this discussion that the only alternative estimator
to Y/X is its jackknifed version. There is in fact a considerable number of competitors
including estimators proposed by Mickey, Hartley and Ross, Tin, and Beale. A variety of
papers have attempted to unravel which estimator is the best to use. Four papers which
include the jackknifed Y/X as one of the contestants are Tin (1965), Rao & Beegle (1967),
Rao (1969), and Hutchison (1971). The findings favour the jackknife, the Tin, and the
Beale estimators. The jackknife does not always win the contest, but it never lags far behind
the winner. Although the jackknifed Y |X is computationally more difficult than the other
estimators when g = », it has the advantage of an easily computed estimate of its variability
being associated with it; see §3-4.

For a more general model P.S.R.S.Rao & J.N.K.Rao (1970) also announced results on
the comparison of some of these estimators.

Two final papers to be mentioned are Deming (1963) and Brillinger (1966a) which
describe the application of the jackknife technique in different types of sample surveys.

3. INTERVAL ESTIMATION
3-1. General remarks

The next subsections describe general problems in which it has been proved that Tukey’s
proposal is indeed valid. Namely, the statistic (1-3) has an approximate ¢ distribution or,
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for large g, an approximate normal distribution. The proofs, which are not included, are all
of a similar character. A power series expansion of 4 in terms of the basic random variables
Y, ..., Y, is derived. It is then shown that the linear term in the expansion gives the correct
behaviour and the other terms are asymptotically negligible.

3-2. Function of a maximum likelihood estimate

Consider the standard formulation in which the maximum likelihood estimate 8 is a root
of the equation
= 9logp(¥y; 6)

0=3

) 20 ’ (3-1)

where p(y;0) is the density function or discrete mass function for the random variables
Y;. Under the usual regularity conditions for the asymptotic normality of 8, Brillinger (1964)
proved that the limiting distribution of (1-3) is exactly a ¢ distribution with g — 1 degrees of
freedom when ¢ is held fixed and & —oo. With little extra effort the proof can be extended to
the case where 8 = f(¢) and @ is the root of an equation analogous to (3-1) with ¢ replacing 6.
The function f needs to have a continuous first derivative.

Note that the above limit was taken by holding the number of groups g fixed and letting
the size of each group become large. It has been shown in ratio estimation that smaller mean
squared error is achieved by increasing the number of groups rather than the size of each
group, and one might guess this is true generally whenever it is computationally feasible to
do so. Also, by letting g—oc0 one obtains Gaussian critical values, which are smaller than ¢
critical values, so that the intervals may be sharper for large g and small . However, no
one has succeeded in proving that (1-3) has a limiting normal distribution when g = n— o0
under the usual regularity conditions on p(y; 6). The proof can be pushed through by putting
much heavier conditions on p(y; 6) such as bounds on derivatives higher than the third, but
the details are so unpleasant that no one has seen fit to publish them.

In an abstract Fryer (1970) reports results on the moments of maximum likelihood jack-
knifing in the multiparameter case.

The maximum likelihood problem is perhaps not so significant an application for the
jackknife as the remaining subsections because the distribution of the random variables
Y, is specified. This means that considerable other distributional machinery can be brought
to bear to determine the exact or asymptotic distribution of 8. It would be quite interesting
to know what the jackknife gives when the assumed parametric model does not hold.

3.3. Function of a mean

Let 0 = f(u) where u = E(Y;). Miller (1964) proved that for 0 = f(Y) the limiting distribu-
tion of (1-3) with ¢ = nis a unit normal distribution as n—o0, provided that var (¥;) = o2 <0
and f has a bounded second derivative near x.

The class of statistics which can be put in the form f(Y) is rather limited, but extension to
similar variables such as f(s2) where s? is the sample variance (Miller, 1968) was immediate.
The class was considerably broadened by the generalization in the next subsection to
statistics of the form f(U) where the argument is a U-statistic. A U-statistic is in a sense a
fancy mean.
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3.4. Function of a U-statistic
Any statistic of the form

Uy o) = o S (T ), (32)

n
()
where the kernel function k(y,, ..., ¥,,) is symmetric in its m arguments and the summation is
over all the combinations of m variables Yil, ..., Y, out ofthen variablesY, ..., Y, istermed a
U-statistic. Let 4 = E{k(Y,, ...,Y,,)}. The parameter of interest is f(x), and the associated
estimator to be jackknifed is § = f(U). Then Arvesen (1969) proved that (1-3) with g = n has
a limiting unit normal distribution as n— oo provided that E{k*(Y, ..., Y,)} <o and fhasa
bounded second derivative near u.

Arvesen also extended this result to the very general case of a real-valued function of
several U-statistics f(U,, ..., U,) where each U-statistic U; has a different kernel function ;
for the same set of basic independent and identically distributed variables Yy, ..., Y, which
can now be p-dimensional vectors. The class of statistics falling into this framework is quite
broad and includes, for example, ratios, the ¢ statistic, the Wilcoxon signed-rank statistic,
and the product-moment correlation coefficient.

An attempt was made by Arvesen to generalize these results to the case of nonidentically
distributed independent random variables or vectors. Unfortunately, heavy conditions on
the proper behaviour of complicated moments are required, so this approach has not led to
many fruitful applications with the exception of justifying the use of the jackknife in
unbalanced variance component problems; see §3-8.

Earlier Mantel (1967) had noticed that the components used in the jackknife 0,20_;/n,
23, 0_i;/{n(n—1)},ete. are U-statistics. It is not clear how to exploit this observation to
use the probability theory developed for U-statistics unless 4 is held fixed and 20_4/n is
generalized to averaging over all possible subsets of size (9 — 1)h.

3.5. Function of regression estimates

With the one exception noted at the end of the previous subsection the machinery of the
jackknife has to date been confined to handling balanced problems with independent and
identically distributed random variables. In a forthcoming paper Miller (1974) widens the
domain of validated applicability of the jackknife to the full linear model.

Let Y = XB+e, where Y = (¥,,....,Y,))", B=(B1,--Bp)'s ¢ = (ey,...,¢,)", and X is an
n x p matrix. For simplicity assume rank (X) = p. The random variables e; are assumed to
be independent and identically distributed with E(e;) = 0, var (e;) = 0, and E(e}) < 0.
The X matrix is assumed known, the Y vector observed, and the parameters # and o are
unknown.

Let 0 = f(8) be the parameter of interest, where f is a real-valued function with bounded
second derivatives near the true 8. The customary ad hoc estimator of 6 would be 8 =1,
where f is the least squares estimator (X’'X)~2X"Y. The jackknife is applied in the usual
fashion by successively deleting each row of X and Y to obtain 0_,=fB) G=1,...,n)
and hence the corresponding pseudo-values. Then, under the condition X'X/n—X, a
positive-definite matrix, as n— 00, it can be proved that (1-3) with g = » has a limiting unit
normal distribution.
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This result extends the valid use of the jackknife to the estimation of linear or nonlinear
f(B) in unbalanced analyses of variance or regression problems. Although the details have
not been checked, the proofs seem to generalize to the case of nonlinear least squares

(Y, —g(xs; )}

3.6. Stochastic processes with stationary, independent increments

Gaver & Hoel (1970) were interested in estimating the reliability parameter 6 = ¢—*7 for
fixed 7 > 0 where A is the intensity parameter of a Poisson process {Y;}. If the process is
observed over the interval [0, T'], then A = ¥,/T is everyone’s estimator for A. A jackknife
method of estimating 6 = ¢~27 is to divide the time interval [0, 7'] into % equal-length sub-
intervals and to jackknife the ad hoc estimator § = e~A". If AY, =Y,;— Y, 13, where
d = T|n, then the estimator with the ith subinterval removed is #_; = e~A-, where
A= (Yp—AY)/[(T-d).

Unlike the previous examples it is possible to pass to the limit n—oco. This gives the
limiting estimator

lim 6 = e—ir{1_YT(eﬂT—1—1)}_ (3-3)
o0 T
This is not, as one might naively suppose, an unbiased estimator of . Gaver and Hoel com-
pared this estimator with the unjackknifed #, the minimum variance unbiased estimator,
and several Bayesian estimators. Although (3-3) is not dominated by any other estimator,
it can be considerably improved upon by some of the other estimators for certain values of 4.
However, which estimator and which values depend on the ratio of 7 to 7'.

Gray, Watkins & Adams (1972) generalized this idea to stochastic processes {¥;} with
stationary, independent increments. Since they need to restrict {¥,} to processes whose path
functions are piecewise continuous and of bounded variation, the Wiener process component
is eliminated and {Y;} reduces essentially to a sum of independent Poisson processes with
different jump sizes y and intensity parameters A,. Let 6 = f(A), where E(Y;) = At and
A =Y;/T. Then, by dividing the interval into » equal-length subintervals, jackknifing,
and passing to the limit n— oo, one obtains the estimator

tim 0= /() - 2 {7 (- F) 1) + 7 ), (3-4)
n-—>00 y
where N, is the number of jumps of size y in [0, T] and f” is the derivative of f.
Under the conditions that I' = {y} is a bounded set, f has a bounded second derivative
near A, and

%Z YN, — 02 = var (¥;) <00 (3-5)
Y

in probability as T'—co, the estimator (3-4) is asymptotically normally distributed with
mean @ and variance o2{f'(A)}?/T, as T — co. The limit as n— oo of the jackknife variance
estimate §%/n = X(f;—0)2/{n(n—1)} is

im & = g [f(A-2) s
Under the conditions (3-5), I bounded, and f’ continuous near A, (3-6) multiplied by 7'
converges in probability to o%{f'(1)}2 as T'—co0. Thus, T%(lim § — 6)/(lim §2/n)? has a limiting
unit normal distribution as 7' —>co under the stated conditions.
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3.7. Counterexamples

The reader should not acquire the impression that the jackknife always works. This is
far from true. For the jackknife to operate correctly the estimator & has to have a locally
linear quality. Miller (1964) demonstrated that for § = Y,,.), the largest order statistic, the
limiting behaviour of (1-3) with g = n can be degenerate or nonnormal. Similarly, in unpub-
lished notes L. E. Mosesshowed that when 8 is the sample median the asymptotic distribution
of (1-3) with ¢ = n is normal but with variance 4 when # is even.

For a truncation point problem with § = Y,,,) Robson & Whitlock (1964) modify the
definition of the jackknife because of the particular bias expansion and derive 2Y,)—¥,,_;,
as an estimator. Gray & Schucany (1972, pp. 13-8, 44-51) show how this and the higher
order Robson—Whitlock truncation point estimators can be obtained from the generalized
jackknife (2-5) and (2-7). In obtaining approximate confidence intervals Robson and Whit-
lock abandon the ratio (1-3) and give arguments for the approximate confidence statement

1—a
pl'{Y(m'*-T(Y(n)_Y(n—l)) > 0} =1-a. (3:7)

An area in which the jackknife has had little or no success is time series analysis. This is
an ironic twist because it was for a time series problem that Quenouille originally proposed
the idea. Except for the case g = 2, the removal of data segments from a serially correlated
sequence of observations causes difficulty for the jackknife. For example, no one has
successfully found a way to make it provide valid estimates of the variability of smoothed
estimates of the spectral density.

3-8. Main application: inference on variances

Standard textbook methodology uses the chi-squared distribution for setting a confidence
interval on 0% from s, the sample variance. Similarly, the F distribution is employed to
make inferences on o3/0} from s}[s3, the ratio of variances from independent samples.
Pearson (1931) and Box (1953) sounded the alarm on the use of these procedures as
well as their k-sample cousins, Bartlett’s test, Hartley’s test, and Cochran’s test. The
distribution theory for these techniques is precisely correct when the observations are
normally distributed, but the error probabilities can be grossly inaccurate for nonnormal
distributions.

Mosteller & Tukey (1968) and Miller (1968) studied the application of the jackknife to
log s* or log s} —logs3. The jackknife variance does correctly estimate the variability of
log s* or log s} —log s3 for all underlying distributions, whereas the previously mentioned
techniques rely upon a theoretical variability which is valid only when p,/0 = 3. For two-
sample hypothesis testing the jackknife seems to perform about the same as the Box—
Andersen technique, in which a beta approximation uses the fourth-sample moments to
adjust the degrees of freedom. Both outperform Levene’s test and the variants of the Box
technique where the sample is divided into subsamples and comparison is made between the
log s> computed for each subsample. In the Box-type tests power is lost in the arbitrary
division into subsamples. Shorack (1969) makes additional comparisons among competing
variance tests which are relevant to the preceding brief discussion.

Layard (1973) examined the jackknife’s performance in the k-sample hypothesis testing
problem. The jackknife and an asymptotic y? test, which, like Box and Andersen’s test,
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estimates the fourth moment directly, perform about the same, and Box’s test lags farther
behind than in the two-sample problem.
Inference on variance components in problems such as

Yi=p+a;+e; (i=1,....I;j=1,..,n),

with a; ~ N(0,02) and e; ~ N(0,02), all random variables being independent, is also
extremely sensitive to normality assumptions. Arvesen (1969) considers application of the
jackknife to inference on 02, and Arvesen & Schmitz (1970) to inference on o2%/o2. In the
latter paper their Monte Carlo results reaffirm the unsuitability of normal theory techniques
for general distributions, and demonstrate the robustness of the jackknife when applied to
the log of the variance ratio. The results are not as good without the log transformation.
More will be said in §5-3 about the need for transformations in conjunction with the jack-
knife. In a technical report Arvesen and Layard give the theoretical machinery needed to
justify the use of the jackknife in unbalanced variance component problems.

4. OTHER DEVELOPMENTS
4-1. Multivariate analysis

Normal theory tests on covariance matrices are also sensitive to nonnormality. Layard
(1972) asymptotically described the nonrobustness of the usual tests for the equality of two
covariance matrices and the effectiveness of the jackknife in dealing with this problem. In a
recent paper Duncan & Layard (1973) investigate by Monte Carlo sampling the special
case of the correlation coefficient in a bivariate population. It is dangerous to use Fisher’s
transformation Z = tanh~1r for testing whether a correlation coefficient equals a specified
nonzero value or for testing the equality of two correlation coefficients because of the extreme
sensitivity of the variance of Z to a lack of normality. Jackknifing Z does, however, pro-
duce a correct asymptotic variance.

In an earlier paper Dempster (1966) proposed a modified jackknife when dealing with
canonical correlations. His proposal is to delete single degrees of freedom rather than single-
vector observations. The procedure seems harder to follow than the ordinary jackknife,
but this may be illusory.

Another area of multivariate analysis in which the jackknife has found application is
discriminant analysis. One can jackknife the discriminant coefficients to assess their
variability, but the more interesting application is in the estimation of the error or mis-
classification probabilities. The method of testing each vector observation in the samples,
with the discriminant function computed from all the observations, in order to estimate the
errorrateshasbeenknown forsometimeto besubject to serious bias. There are variousnormal
and nonparametric procedures alternative to this, and one is to test each observation with
the discriminant function computed from the data with that particular observation re-
moved. This has been termed the U method by Lachenbruch & Mickey (1968), and in the
same journal issue Cochran (1968) referred to this method as an application of the jackknife
principle although this is not precisely correct. Mosteller & Tukey (1968) examined the
performance of the U method on the discrimination problem created by the Federalist
Papers. A synopsis of the Mosteller-Tukey work is given by Gray & Schucany (1972,
pp- 115-36).
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4-2. Infinitesimal jackknife

In a recent Bell Telephone Laboratories technical memorandum L. B. Jaeckel has intro-
duced the concept of an infinitesimal jackknife. At the moment it does not appear to be as
practically useful as the ordinary jackknife, but it establishes what could be an important
bridge between the jackknife and the recently developed theory for robust estimation of the
location of a symmetric distribution (Andrews ef al. 1972; Huber, 1972).

To understand the connexion it is necessary to briefly summarize some relevant aspects
of the theory for robust estimation. Many estimators § are equal to, or are asymptotically
equivalent to, functions 7' (#) of the sample cumulative distribution function F, where T is
defined over a wide class of distribution functions. In particular, the unknown parameter 6
is T(F'), the value of the function at the true F. Under regularity conditions estimators of this
type can be expressed in the form

T(F) = T(F) + [T'(F,y)d(F ~ F) (y) + 0,(nH), (41)
where T"(F, y) is a von Mises (1947) derivative, defined by

g T+ ecr;) —T(F)
€0

= [T"(F,y)d6(y). (42)

The term influence curve has been attached to 7"(F, y) by F. R. Hampel because it measures
to what degree a change in the mass at y will change the estimate.

If the function 7' is assumed to be normalized so that T'(cF) = T'(F) for all F and ¢ > 0,
then f T'(F,y)dF(y) = 0, so that

T(F) = T(F)+5 STE.F)+o,n7H). «3)

The average of independent and identically distributed random variables in (4-3) is asymp-
totically normally distributed with mean zero and variance

Lt gppar) (4)

If 7" is known, an empirical estimate of the asymptotic variance is
1t
-2 {T'E. 1)) (45)
nei=1

To define the infinitesimal jackknife think of the estimator 8 as a function 7'(Y ; w) of the
observations Y = (¥,,...,Y,)" and arbitrary weights w = (w,,...,w,)". If w; = 1/n, then
8 = T(F). Also, suppose that the function of the observations and weights is self-normalizing
in the weights so that 7'(Y;cw) = T(Y;w) for all ¢ > 0.

For the ordinary jackknife

1 1
0_,= T(Yl,...,Y,,,;l, 05) (4-6)

but for the infinitesimal jackknife the weight of the ith observation is reduced only to
1/n — e instead of to 0, namely,.

1 1 1
0"‘(6)=T(Y:"'"’Y”;;,’""1_1._6""’;&)' (4-7)
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By analogy with the ordinary jackknife the infinitesimal jackknife estimate of the asymp-
totic variance of 4, or its infinitesimally jackknifed version, is defined to be

§e) (1—¢) 1 2 )
= i§1 ) - =6_,e)} - (4-8)
When ¢ = 1/n, this coincides with the ordinary jackknife estimate.
Suppose that T'(y; w) is differentiable with respect to the weights. Then, let
. 2. .

i ow ’ [ awf s

(1

where the derivatives are evaluated at y = ¥, w = (1/n,...,1/n)’. The self-normalizing
condition on the weights in 7' implies that D, = 0. From the expansion

0_ie) =0 —eD;+13e2D,;— ..., (4-10)
it follows that
20) .. &) 114
) e lim 2 . 11
n h_’i% n E‘lﬁ" @i

But D, is precisely T"(F, Y;), s0 (4-11) equals (4-5). Thus, the infinitesimal jackknife variance
estimate (4-11) provides an estimate of the asymptotic variance (4-4).
For the ordinary jackknife

0-6= (n—l)(%fﬁ_i— ) (4-12)
estimates the bias of 8. Correspondingly, let

> 1—¢f1

b(e) = — {;L 29_,.(6)—0}. (4-13)

Expression (4-13) equals (4-12) when € = 1/n. From the power series expansion (4-10) it
follows that
5(0) = lim b(e) = —— 3, D. (4-14)
€—>0 2n i=1
The infinitesimal jackknife estimate is defined to be §(0) = 8 —5(0).

Jaeckel proves under general conditions, which will not be cited here, that for estimators
of the form (4-3) 3%(0) and 75(0) converge to the correct asymptotic constants as n—co. It is
not at present clear how easy it is to check these conditions in particular examples. Jaeckel
also shows that under the same conditions the ordinary jackknife estimates behave correctly
asymptotically.

4-3. Miscellanea

Salsburg (1971) gives an application of the jackknife to testing in quantal response bio-
assay where the probabilities of success at the observed dose levels are all near 1 (or 0). This
application is also described in a review paper by Arvesen & Salsburg (1973).

In arecent paper Gray, Watkins & Schucany (1973) explore the connexion between the
jackknife and uniform minimum variance unbiased estimation of f(x), f(0') and f(x, 0'2) for
special f, where x and o2 are the parameters of a normal distribution.

In the discussion of a paper by P.Sprent on linear functional relationships Brillinger
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(1966b) proposes the use of the jackknife to assess the variability of the estimators. In
another forthcoming paper P. O. Anderson has studied the jackknife’s effect on regression
estimators which minimize the orthogonal distance.

5. NEW DIRECTIONS
5.1. General remarks

‘Where should research on the jackknife go from here ? What worthwhile questions on the
jackknife still remain unanswered? Listed below are some thoughts on this which are by
no means all-inclusive.

5.2. Linear combinations of order statistics

Estimators based on single order statistics such as the median or maximum (§3-7) do not
behave properly under jackknifing. What about smooth functions of the order statistics
such as 8 = 2J(i[n)Y,,/n, where J is a continuous function? Estimators like this arise in
robust estimation of the location of a symmetric distribution and overlap with the class of
estimators (4-3) where the jackknife is known to work under regularity conditions;see §4-2.
How broad is the class of estimators for which (4-3) and the needed regularity conditions are
satisfied? Will the jackknife accurately assess the variability of the more complicated
adaptive estimators ? Obtaining good estimators of the variability of robust estimators seems
to be an open and important question.

5-3. Transformations

Most advocates of the jackknife would suggest using a variance stabilizing transforma-
tion on the estimator in conjunction with the jackknife. Examples are jackknifing log s?
and tanh—!r instead of s and r. However, the connexion between transformations and the
jackknife is more than just a nicety. Transformations are needed to keep the jackknife on
scale and thus prevent distortion of the results.

Consider inference on o2, Without the log transformation the pseudo-values
ns?®— (n—1)s?,; can be negative. The jackknife does not know variances must be posi-
tive. Sizeable or frequent negative pseudo-values can produce distorted point and
interval estimates. With the log transformation a negative pseudo-value corresponds to
a small variance, and this will not pull the aggregate so far to the left.

Table 1. Control blood flow data

DYE 1-15 1-70 1-42 1-38 2-80 4-70 4-80 1-41 3-90
EFP 1-38 1-72 1-59 1-47 1-66 3-45 3-87 1-31 3-75

The following data illustrate the analogous point with correlation coefficients. A medical
investigator at the Stanford Medical School wanted a measure of association between two
techniques for measuring blood flow. A standard method (pYE) is to inject dye into the
pulmonary artery and sample it from the aorta. A computer integrates the experimentally
determined curve of dye concentration to obtain a blood-flow measurement. The electro-
magnetic flow probe method (EFp) is newer. In it a cuff placed around the aorta creates an
electrical field to measure the blood flow. The DYE method is extremely variable, and the
EFP has serious calibration problems. To assess the amount of agreement between the two
methods, essentially simultaneous measurements were made on nine dogs. The data in
appropriate units are displayed in Table 1.
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The number of observations may be rather small to be trying the jackknife, but it is
interesting to see what it gives. The correlation coetficients and pseudo-values with and
without the transformation tanh— appear in Table 2.

The correlation coefficient estimate 7, is quite remarkable ! The untransformed jackknifed
estimateis 7 = 0-9452 and its estimated standard erroris 0-0408. The jackknife has increased
the estimated value of p slightly, which is probably in the wrong direction. Because of the
size of the standard error, a confidence interval for p will extend well beyond the upper limit
1-0. The transformed values give tanh—lr = 1-593 which corresponds to a p value of
0-9206. The estimated standard error of tanh—17 is 0-471 so that a 95 9, confidence interval
for p is (0-4672, 0-9906). The peculiar pseudo-value — 1-724 is what makes the interval so

broad.
Table 2. Correlation coefficients and pseudo-values for control blood

Sflow data with and without transformation

73 tanh—1r_; tanh-1r; ? r_; 73 tanh-1r_; tanh-17r,

2 r_,
0 0-9448 — 1-780 — 5 0-9766 0-6904 2:218 —1-724
1 0-9406 0-9784 1-743 2-:076 6 0-9396 0-9864 1-735 2-140
2 0-9434 0-9560 1-768 1-876 7 0-9205 1-1392 1-593 3-276
3 0-9434 0-9560 1-768 1-876 8 0-9396 0-9864 1-735 2:140
4 0-9408 0-9768 1-745 2-:060 9 0-9583 0-8368 1-925 0-620

Table 3. Propranolol blood flow data

DYE 0-77 0-87 1-056 1-21 3-80 0-55 2-33
EFP 1-03 0-96 1-25 1-66 3-39 0-60 312

The connexion between transformations and the jackknife is worth more exploration
than a single numerical example and a few published Monte Carlo results (Arvesen &
Schmitz, 1970). Is there an optimal way to select a transformation for use with the jack-
knife ? .

5-4. Outliers

The jackknife is not a device for correcting outliers. The following numerical example
illustrates this. On seven of the dogs in the experiment described in §5-3, first a stimulant,
isuprel, and then a depressant, propranolol, were administered after the data listed in
Table 1 had been obtained under control conditions. Dual measurements on DYE and EFP
were taken under these induced states. The propranolol data are displayed in Table 3.

The fifth point could be considered an outlier because in all other pairs DYE < EFP.
The transformed correlation coefficients and pseudo-values are presented in Table 4.

The jackknifed estimate is tanh r = 0-375 which corresponds to a value of p of 0-359. The
jackknife has pulled the estimate down from 0-948 as one might hope, but it seems to have
gone beyond the bounds of reason. The estimated standard error for tanh—7is 1-077 so thata
95 9, confidence interval for p is (—0-978, 0-995).

It would be interesting to study theoretically how outliers perturb the jackknife esti-
mator. Is the examination and correction of pseudo-values a good way of handling outliers ?

5-5. Higher-order variance estimate

At the moment the variance estimate for the jackknife involves only the pseudo-values
from the first-order jackknife. Can the higher-order jackknife expressions be used in any
way to improve the variance estimate?
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Table 4. T'ransformed correlation coefficients and pseudo-values
for propranolol blood flow data

< r_g tanh—1r_; tanh-17;
0 0-9480 1-812 —
1 0-9436 1-770 2-064
2 0-9457 1-789 1-950
3 0-9463 1-795 1-914
4 0-9519 1-852 1-572
5 0-9950 2-995 —5-286
6 0-9423 1-758 2-136
7 0-9837 2-401 —1-722

5-6. Multisample jackknives

To illustrate this question consider a two-sample problem. One way to jackknife is to
compute an estimate of the unknown parameter from the two samples and then jackknife
by successively deleting each observation in the first sample with the second sample intact
and then deleting observations in the second sample with the first intact. An alternative
method of jackknifing is to jackknife each sample separately and combine the results. Both
methods are valid asymptotically, but is either one better than the other?

Similar questions arise whern there are three or more samples and when the observations
come from an experimental design of some sort.

This work was partially supported by a fellowship from the John S. Guggenheim Memorial
Foundation and by a grant from the National Science Foundation. The paper was written
while the author was visiting Imperial College and London School of Hygiene and Tropical
Medicine. D.R. Cox and D.V. Hinkley contributed a number of the suggestions for future
research in §5, and the author thanks them for their assistance in the preparation of the

paper.
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