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Chapter 11
THE GENERALIZED METHOD OF
MOMENTS ESTIMATION

Given that a random samplex1, x2, . . . , xn are drawn from a population which is characterized
by the parameterθθθ whose true value isθθθ◦. If we can identify a vector of functionsg(x; θθθ) of the
random variablex and the parameterθθθ such that the true parameter valueθθθ◦ uniquely solves
the followingpopulation moment condition

E
[
g(x; θθθ)

]
= 0, (11.1)

while the estimator̂θθθ is the unique solution to thesample moment condition

1

n

n∑
i =1

g(xi ; θθθ) = 0, (11.2)

then, under some regularity conditions, we can show thatθ̂θθ is consistent and asymptotically
normal

θ̂θθ
A
∼ N (θθθ◦,

1

n
G(θθθ◦)

′−1
���(θθθ◦) G(θθθ◦)

−1), (11.3)

whereθθθ◦ denotes the true value of the parameterθθθ ,

G(θθθ) = E

[
∂g(x; θθθ)

∂θθθ

]
, (11.4)

and
���(θθθ) = E

[
g(x; θθθ)g(x; θθθ)′

]
. (11.5)

Any estimator defined in such a setup is referred to as aGeneralized Method of Moment
(GMM) estimator. The approach of first identifying some moment condition and then deriving
the corresponding GMM estimator from its sample counterpart has become a very popular way
of generating new estimators in econometrics.

A Simple Example Given the random samplex1, x2, . . ., xn drawn from an unspecified pop-
ulation with a population meanµ and varianceσ 2, we have derived the asymptotic properties of
the sample mean̄x as an estimator ofµ in such a case by directly applying law of large numbers
and the central limit theorem. We now show that the asymptotic analysis of the sample mean
can fit into the GMM framework.
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CHAPTER 11. THE GMM ESTIMATION 3

Let’s consider the functiong(xi ; µ) ≡ xi −µ which gives the following population moment
condition:

E[g(xi ; µ)] = E(xi ) − µ = 0.

It is obvious that the only solution ofµ is the true value of the population meanµ to which
E(xi ) is equal. Thesample counterpartof the population moment condition is

1

n

n∑
i =1

g(xi ; µ) =
1

n

n∑
i =1

xi − µ = 0,

and the solution ofµ is nothing but the sample meanx̄. So the sample mean̄x is actually a
GMM estimator ofµ. Consequently, we can apply the general results for the GMM estimator
to establish the consistency and asymptotic normality of the GMM estimatorx̄. It is also easy
to prove that the asymptotic variance of the GMM estimatorx̄ is n−1σ 2. Although the GMM
argument here appears tedious, the idea is important and has wide applicability.

11.1 Consistency and Asymptotic Normality

The following argument for proving the consistency of the GMM estimator helps illustrate the
key idea of the GMM approach.

We first note, if the second moment ofg(x; θθθ) exists, then law of large numbers implies

1

n

n∑
i =1

g(xi ; θθθ)
p

−→ E
[
g(x; θθθ)

]
. (11.6)

It means that the population moment condition (11.1) can be approximated by the sample mo-
ment condition (11.2). If the estimatorθ̂θθ solves the sample moment condition (11.2) irrespec-
tive of the sample size, then its probability limit, say,θθθ∗ must also solve the probability limit
of (11.2) which is the population moment condition (11.1). But by definition the true param-
eter valueθθθ◦ uniquely solves the population moment condition (11.1), so the probability limit
θθθ∗ must be equal to the true parameter valueθθθ◦. That is,θ̂θθ is a consistent estimator ofθθθ . In
other words, if we know the true parameter value is the solution to certain population moment
condition, then the solution to its sample counterpart will be a consistent estimator.

The proof of asymptotic normality is based on Taylor expansion and the central limit theo-
rem. Given that̂θθθ converges in probability toθθθ◦ and thatg is differentiable with respect toθθθ ,
then for sufficiently largen the first-order Taylor expansion of (11.2) around the true valueθθθ◦

gives the following approximation

0 =
1

n

n∑
i =1

g(xi ; θ̂θθ) ≈
1

n

n∑
i =1

g(xi ; θθθ◦) +
1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ
(θ̂θθ − θθθ◦) (11.7)

or
√

n (θ̂θθ − θθθ◦) ≈ −

[
1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ

]−1
√

n
1

n

n∑
i =1

g(xi ; θθθ◦). (11.8)
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Provided that the second moment of∂g(xi ; θθθ◦)/∂θθθ exists, law of large numbers again implies

1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ

p
−→ G(θθθ◦), (11.9)

and the central limit theorem implies

√
n

{
1

n

n∑
i =1

g(xi ; θθθ◦) − E
[
g(x; θθθ◦)

]} d
−→ u ∼ N (0, ���(θθθ◦)), (11.10)

where E
[
g(x; θθθ◦)

]
= 0. Consequently,

√
n (θ̂θθ − θθθ◦)

d
−→ −G(θθθ◦)

−1
·u ∼ N (0, G(θθθ◦)

−1���(θθθ◦) G(θθθ◦)
′−1), (11.11)

which implies (11.3).

The Estimator of the Asymptotic Variance-Covariance Matrix Based on law of large num-
bers and (11.9), it is readily seen that the following statistic is a consistent estimator of the
asymptotic variance-covariance matrixG(θθθ◦)

−1���(θθθ◦) G(θθθ◦)
′−1 of the GMM estimator̂θθθ :

1

n

[
1

n

n∑
i =1

∂g(xi ; θ̂θθ)

∂θθθ

]−1
1

n

n∑
i =1

[
g(xi ; θ̂θθ)g(xi ; θ̂θθ)′

] [1

n

n∑
i =1

∂g(xi ; θ̂θθ)

∂θθθ

]′−1

. (11.12)

11.2 Regularity Conditions and Identification

In proving consistency and asymptotic normality of the GMM estimator, we have used law of
large numbers and the central limit theorem. Obviously, certain assumptions are required before
we can apply these theorems. The assumptions that ensure the validity of the GMM estimation
are called regularity conditions and they can be divided into four categories:

1. Conditions that ensure the differentiability ofg(x; θθθ) with respect toθθθ . For example,
g(x; θθθ) is usually assumed to be twice continuously differentiable with respect toθθθ .

2. Conditions that restrict the moments ofg(x; θθθ) and its derivatives with respect toθθθ . For
example, the second moments ofg(x; θθθ) and its first derivative are usually assumed to be
finite.

3. Conditions that restrict the range of the possible values which the parameterθθθ can take.
For example,θθθ is not allowed to have infinite value and the true valueθθθ◦ may not be at
the boundary of the permissible range ofθθθ (if θθθ◦ is on the boundary of the permissible
range ofθθθ , then convergence toθθθ◦ cannot take place freely from all directions).

4. The solution to the population moment condition E
[
g(x; θθθ)

]
= 0 must be unique and the

unique solution must be the true valueθθθ◦ of the parameter.
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The first three categories of regularity conditions are somewhat technical and are routinely
assumed. However, we do need to make special efforts to check the validity of the last one
in each application. This last condition is referred to asthe identification conditionbecause it
allows us to identify the true parameter valueθθθ◦ for estimation.

An obvious necessary condition for identification is that the row number, say,m of the vector
g(x; θθθ) is no less than the row number, say,k of the parameter vectorθθθ . That is, the number of
individual population moment conditions cannot be smaller than the number of parameters to
be estimated. Ifm < k, then the population moment condition will have multiple solutions of
which all but one can be the true value so that the resulting GMM estimator does not necessarily
converge to the true parameter value. This is the so-called under-identification problem.

The identification condition is implicitly assumed in the previous analysis of the GMM
estimation. In fact, we have made a stronger assumption thatm = k so that the derivative
G(x; θθθ) of g(x; θθθ) with respect toθθθ is a square matrix and invertible. This is the so-called just-
identification case. In section 11.4 we will examine the over-identification case withm > k.

11.3 The GMM Interpretation of the OLS Estimation

For the linear regression model1

yi = x′

i βββ + εi , (11.13)

let’s assume that the sample{yi , x′

i }, i = 1, . . . , n, are i.i.d., and that E(εi ) = 0. In the present
framework, the explanatory variablesxi are stochastic and, following the arguments in Chapter
10, we have to assume the following population moment condition:

E(xi εi ) = E[xi (yi − x′

i βββ)] = 0. (11.14)

The dimensions ofxi and the zero vector on the right hand side are bothk. So we have in factk
population moment conditions which are just enough for us to estimate thek parameters inβββ,
i.e., we have a just-identification case.2 The corresponding sample moment condition is

1

n

n∑
i =1

xi (yi − x′

i βββ) = 0, (11.15)

which can be written as

1

n
X′(y − Xβββ) = 0 or X′Xβββ = X′y. (11.16)

1We treatβββ not only as the notation for the regression coefficients but also as their true values. Such notational
ambiguity has been existing throughout the earlier chapters. Better notations for the true values of the regression
coefficients may beβββ◦.

2If the xi contains the constant term 1, then one of the moment conditions is E(yi − x′

i βββ) = 0 or E(yi ) =

E(xi )
′βββ.
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But this is equivalent to the first-order condition for the OLS estimation. Hence, the OLS
estimator, which are solved from the above sample moment conditions, can be considered as a
GMM estimator.

In order to apply the asymptotic theory for the GMM estimation, we need to first evaluate3

���(βββ) ≡ E[xi εi εi x′

i ] = E
[
E(ε2

i | xi )xi x′

i

]
= E(σ 2xi x′

i ) = σ 2E(xi x′

i ) (11.17)

and

G(βββ) ≡ E

[
∂xi (yi − x′

i βββ)

∂βββ

]
= −E(xi x′

i ). (11.18)

It is important to note that one of the assumptions (Assumption 5) we made for a multiple linear
regression model is

lim
n→∞

1

n
X′X = lim

n→∞

1

n

n∑
i =1

xi x′

i = Q,

with Q being a finite and p.d. matrix, we can equate E(xi x′

i ) to Q. That is, we have���(βββ) = σ 2Q
andG(βββ) = −Q.

Now, following the general asymptotic theory for the GMM estimation, we then have that
the OLS estimatorb is consistent:

b
p

−→ βββ. (11.19)

and
√

n(b − βββ)
d

−→ N (0, σ 2Q−1). (11.20)

11.4 The GMM Interpretation of the MLE

Suppose the sample{xi }, i = 1, . . . , n are i.i.d. with the density functionf (x|θθθ◦), whereθθθ◦ is
an unknownk-dimensional parameter to be estimated, then we have shown in Chapter 9 that

E

[
∂ ln f (xi |θθθ◦)

∂θθθ

]
= 0, (11.21)

which can be viewed ask population moment conditions that are just enough for us to estimate
thek-dimensional parameterθθθ◦. The corresponding sample counterpart is

1

n

n∑
i =1

∂ ln f (xi |θθθ)

∂θθθ
= 0, (11.22)

and the solution, denoted bŷθθθ , is certainly the MLE ofθθθ◦. In other words, the MLE can be
viewed as a GMM estimator.

3Here, we have further assumed that E(ε2
i | xi ) = σ 2 (i.e.,εi is homoscedasticwith respect toxi ), which will be

true if xi is assumed to be nonstochastic.
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In order to apply the asymptotic theory for the GMM estimation, let’s first define

���(θθθ) = E

[
∂ ln f (xi |θθθ)

∂θθθ

] [
∂ ln f (xi |θθθ)

∂θθθ

]′

(11.23)

and

G(θθθ) = E

[
∂2 ln f (xi |θθθ)

∂θθθ∂θθθ ′

]
. (11.24)

It has also been shown in Chapter 9 that���(θθθ◦) = −G(θθθ◦). Now following the general asymp-
totic theory for the GMM estimation, we then have the well-known results that the MLEθ̂θθ is
consistent and4

√
n(θ̂θθ − θθθ◦)

d
−→ N (0, ���(θθθ◦)

−1). (11.25)

11.5 The GMM Estimation in the Over-Identification Case

If in the population moment condition

E
[
g(x; θθθ◦)

]
= 0 (11.26)

the row number ofg is strictly greater than the row number of the parameter vectorθθθ , then it is
not possible to solve its sample counterpart

1

n

n∑
i =1

g(xi ; θθθ) = 0, (11.27)

because the number of equations is greater than the number of parameters to be solved. What
we could do in such a case is to find a value ofθθθ that makes the sample moment condition as
close to zero as possible based on the following quadratic form:

min
θθθ

[
1

n

n∑
i =1

g(xi ; θθθ)

]′

W

[
1

n

n∑
i =1

g(xi ; θθθ)

]
(11.28)

whereW is some positive definite weighting matrix of constants.

4In Chapter 9 we did not assume the sample to be identically distributed; i.e., the density functionsfi (xi |θθθ◦)

have the subscripti , indicating they are all different. In such a case, the variance-covariance matrix of the asymp-
totical distribution is the inverse of

lim
n→∞

1

n

n∑
i =1

E

[
−

∂2 ln fi (xi |θθθ◦)

∂θθθ∂θθθ ′

]
.

It is readily seen that such a matrix reduces to���(θθθ◦) = −G(θθθ◦) in the present i.i.d. case.
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Given the assumption thatG(θθθ) has full column rank and some additional regularity con-
ditions, θ̂θθ is consistent. To see this we note that the first-order condition for the minimization
problem (11.28) is [

1

n

n∑
i =1

∂g(xi ; θθθ)

∂θθθ

]′

W

[
1

n

n∑
i =1

g(xi ; θθθ)

]
= 0, (11.29)

which can be viewed as the sample counterpart of the moment conditions

G(θθθ)′W E
[
g(x; θθθ)

]
= 0. (11.30)

Given thatG(θθθ) has full column rank and thatW is nonsingular, then only the ture parameter
valueθθθ◦ can satisfy these moment conditions, which in turns implies that the GMM estimator
θ̂θθ is consistent.

We can further show that̂θθθ is asymptotically normal:5

θ̂θθ
A
∼ N (θθθ◦,

1

n

[
G(θθθ◦)

′W G(θθθ◦)
]−1G(θθθ◦)

′W ���(θθθ◦) W G(θθθ◦)
[
G(θθθ◦)

′W G(θθθ◦)
]−1

).

(11.31)
Obviously, different weighting matrixW will give different estimators with different asymp-

totic variance-covariance matrices. That is, the efficiency of the resulting GMM estimators

5Given thatθ̂θθ converges in probability toθθθ◦ and thatg is twice differentiable with respect toθθθ , then for
sufficiently largen the Taylor expansion of (11.29) around the true valueθθθ◦ gives the following approximation

0 =

[
1

n

n∑
i =1

∂g(xi ; θ̂θθ)

∂θθθ

]′

W

[
1

n

n∑
i =1

g(xi ; θ̂θθ)

]

≈

[
1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ

]′

W

[
1

n

n∑
i =1

g(xi ; θθθ◦)

]
+

{[
1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ

]′

W

[
1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ

]
+ S

}
(θ̂θθ − θθθ◦)

or

√
n (θ̂θθ−θθθ◦) ≈

{
−

[
1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ

]′

W

[
1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ

]
+ S

}−1[
1

n

n∑
i =1

∂g(xi ; θθθ◦)

∂θθθ

]′

W

[
√

n
1

n

n∑
i =1

g(xi ; θθθ◦)

]
,

whereS is ak × k matrix in which thej th column is[
1

n

n∑
i =1

∂2g(xi ; θθθ◦)

∂θθθ∂θ j

]′

W

[
1

n

n∑
i =1

g(xi ; θθθ◦)

]
.

We note that (11.6) implies thatS converges in probability to zero. Thus, by (11.9) and (11.10), we have

√
n (θ̂θθ − θθθ◦)

d
−→ −

[
G(θθθ◦)

′W G(θθθ◦)
]−1G(θθθ◦)

′W ·u

∼ N (0,
[
G(θθθ◦)

′W G(θθθ◦)
]−1G(θθθ◦)

′W ���(θθθ◦) W G(θθθ◦)
[
G(θθθ◦)

′W G(θθθ◦)
]−1

).
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depends on the weighting matrixW. It can be shown that6[
G(θθθ◦)

′W G(θθθ◦)
]−1G(θθθ◦)

′W ���(θθθ◦) W G(θθθ◦)
[
G(θθθ◦)

′W G(θθθ◦)
]−1

≥
[
G(θθθ◦)

′���(θθθ◦)
−1G(θθθ◦)

]−1

(11.32)
for any positive definiteW. This finding implies that the most efficient GMM estimatorθ̂θθ can be

obtained by settingW = �̃��
−1

for any consistent estimator̃��� of ���(θθθ◦) = E
[
g(x; θθθ◦)g(x; θθθ◦)

′
]

and then solving the following minimization problem:

min
θθθ

[
1

n

n∑
i =1

g(xi ; θθθ)

]′

�̃��
−1

[
1

n

n∑
i =1

g(xi ; θθθ)

]
. (11.33)

The resulitng GMM estimator is denoted again asθ̂θθ which from now on will represent such an
efficient GMM estimator. It is readily seen thatθ̂θθ is consistent and asymptotically normal

θ̂θθ
A
∼ N (θθθ◦,

1

n

[
G(θθθ◦)

′���(θθθ◦)
−1G(θθθ◦)

]−1
). (11.34)

The derivation of the GMM estimator̂θθθ with over-identified moment condition essentially
requires a two-stage procedure because a preliminary estimator is needed for calculating the
weighting matrix�̃��. A particularly simple choice of̃��� is

1

n

n∑
i =1

g(xi ; θ̃θθ)g(xi ; θ̃θθ)′ (11.35)

whereθ̃θθ is a preliminary estimator ofθθθ which can be anyconsistentestimator ofθθθ . A common
one can be derived by solving the following simpler minimization problem

min
θθθ

[
1

n

n∑
i =1

g(xi ; θθθ)

]′ [
1

n

n∑
i =1

g(xi ; θθθ)

]
. (11.36)

That is, the preliminary consistent estimatorθ̃θθ itself is a GMM estimator based on an especially
simple weighting matrixW = I .

The asymptotic variance-covariance matrix can be consistently estimated by

1

n


[

1

n

n∑
i =1

∂g(xi ; θ̂θθ)

∂θθθ

]′ [
1

n

n∑
i =1

g(xi ; θ̂θθ)g(xi ; θ̂θθ)′

]−1[
1

n

n∑
i =1

∂g(xi ; θ̂θθ)

∂θθθ

]
−1

. (11.37)

which can be compared to the one for the just-identified case in (11.12).

6Let G ≡ G(θθθ◦) and ��� ≡ ���(θθθ◦), then (G′WG)−1G′W���WG(G′WG)−1
− (G′���−1G)−1

=

(G′WG)−1
[
G′W���WG − G′WG(G′���−1G)−1G′WG

]
(G′WG)−1

= (G′WG)−1G′W���
[
���−1

−

���−1G(G′���−1G)−1G′���−1]���WG(G′WG)−1 which can be expressed in the form ofA���A′ with
A = (G′WG)−1G′W���

[
���−1

− ���−1G(G′���−1G)−1G′���−1]. Since A���A′ is necessarily a p.d. matrix, we
therefore have(G′WG)−1GW′���WG(G′WG)−1

≥ (G′���−1G)−1.
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11.6 The GMM Interpretation of the Instrumental Variable
Estimation

For the linear regression model (11.13), suppose the stochastic explanatory variablesxi are
endogenous; i.e.,

E(xi εi ) = E[xi (yi − x′

i βββ)] 6= 0. (11.38)

The analysis in Chapter 10 indicates that the OLS estimation will not be consistent. To estimate
the regression coefficientβββ, we need to employ certaininstrumental variableszi such that
Cov(zi , xi ) 6= O and

Cov(zi , εi ) = E(zi εi ) = E[zi (yi − x′

i βββ)] = 0. (11.39)

Here, let’s assume the dimensionsm of zi is greater than or equal tok, the number of ex-
planatory variables inxi . The condition (11.39) can now be viewed as the (over-identified or
just-identified) moment conditions we need for conducting the GMM estimation for the linear
regression model (11.13).

In order to implement the GMM estimation, we need to first evaluate7

���(θθθ◦) ≡ E(zi εi εi z′

i ) = E(ε2
i zi z′

i ) = E
[
E(ε2

i | zi )zi z′

i

]
= E(σ 2zi z′

i ) = σ 2E(zi z′

i ). (11.40)

The GMM estimation forβββ is then based on

min
βββ

[
1

n

n∑
i =1

zi (yi − x′

i βββ)

]′ (
σ 2 1

n

n∑
i =1

zi z′

i

)−1[
1

n

n∑
i =1

zi (yi − x′

i βββ)

]
. (11.41)

which can be written as8

min
βββ

1

n
(y − Xβββ)′Z(Z′Z)−1Z′(y − Xβββ), (11.42)

whereZ = [ z1 z2 . . . zn ]′. It is readily seen that the solution to this minimization problem is

β̂ββ =
[
X′Z(Z′Z)−1Z′X

]−1X′Z(Z′Z)−1Z′y, (11.43)

which is also referred to as theinstrumental variable(IV) estimator ofβββ.9

7Here, we have further assumed that E(ε2
i | zi ) = σ 2; i.e.,εi is homoscedasticwith respect tozi .

8We drop the scalarσ 2 from the expression. Doing so will not affect the derivation of the GMM estimator of
βββ.

9In Chapter 10 we suggested a two-stage estimation for using the instrumental variables. It is readily seen that
the resulting two-stage estimator is identical to (11.43).
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In order to apply the asymptotic theory for the GMM estimation, we need

G(βββ) ≡ E

[
∂zi (yi − x′

i βββ)

∂βββ

]
= −E(zi x′

i ). (11.44)

The general asymptotic theory for the GMM estimation implies that the IV estimatorβ̂ββ is con-
sistent and

√
n(β̂ββ − βββ)

d
−→ N (0, σ 2

{
E(xi z′

i )
[
E(zi z′

i )
]−1

E(zi x′

i )
}−1

). (11.45)

Note that the asymptotic variance-covariance matrix for the IV estimatorβββ can be estimated by

s2[X′Z(Z′Z)−1Z′X
]−1

,

wheres2 is some consistent estimator ofσ 2.

11.7 The Restricted GMM Estimation

Suppose other than the over-identified moment condition, we have another set of conditions that
we believe the true parameterθθθ◦ should satisfy. Let’s also assume such extraneous conditions
can be expressed as anJ-vector of functions of the parameterθθθ :

h(θθθ◦) = 0. (11.46)

We note these conditions do not involve the random variablexi so that they are fundamentally
different from the moment condition. If these conditions are true, then we certainly want the
GMM estimator to satisfy them. The way to impose these conditions to the GMM estimator
is to consider the restricted minimization with the conditionh(θθθ◦) = 0 imposed as a set of
restrictions:

min
θθθ

[
1

n

n∑
i =1

g(xi ; θθθ)

]′

�̃��
−1

[
1

n

n∑
i =1

g(xi ; θθθ)

]
subject toh(θθθ) = 0, (11.47)

or

min
θθθ

[
1

n

n∑
i =1

g(xi ; θθθ)

]′

�̃��
−1

[
1

n

n∑
i =1

g(xi ; θθθ)

]
+ h(θθθ)′λλλ, (11.48)

whereλλλ is anJ-vector of Lagrange multipliers. The solution to such a problem, denoted asθ̂θθ∗,
is called the restricted GMM estimator as opposed to the unrestricted GMM estimatorθ̂θθ .

When we derive the GMM estimator based on the over-identified moment condition E
[
g(x; θθθ◦)

]
=

0, the moment condition is never exactly satisfied by either the restricted or the unrestricted
GMM estimator. But it should be pointed out the restrictionh(θθθ◦) = 0, in contrast, is exactly
satisfied by the restricted GMM estimator. So the moment condition and restriction are not
treated symmetrically although both are conditions on the parameter value.
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It can be proved that, just like the unrestricted GMM estimator, the restricted GMM estima-
tor is consistent and has an asymptotic normal distribution. However, while both estimators are
consistent, their asymptotic normal distributions are not the same. In particular, the asymptotic
variance-covariance matrix of the restricted GMM estimator is always smaller than or equal to
that of the unrestricted GMM estimator. This result simply reflects the fact that the restricted
GMM estimator, by incorporating more information from the restrictionh(θθθ◦) = 0, is more
(asymptotically) efficient. The present discussion is very similar to the one we had on the the
relationship between the unrestricted MLE and the restricted MLE. As a matter of fact, the
derivation of the asymptotic distribution of the restricted GMM estimator is parallel to that of
the restricted MLE.

11.7.1 Comparing Restricted and Unrestricted GMM Estimators

To simplify our exposition here, let’s denote (half of) the objective function for minimization in
defining the GMM estimator with over-identified moment condition by

q(θθθ) ≡
1

2

[
1

n

n∑
i =1

g(xi ; θθθ)

]′

�̃��
−1

[
1

n

n∑
i =1

g(xi ; θθθ)

]
. (11.49)

and the first order derivative ofq(θθθ) by

s(θθθ) ≡

[
1

n

n∑
i =1

∂g(xi ; θθθ)

∂θθθ

]′

�̃��
−1

[
1

n

n∑
i =1

g(xi ; θθθ)

]
. (11.50)

Because of the difference between the restricted GMM estimatorθ̂θθ∗ and the unrestricted
GMM estimatorθ̂θθ , we observe the following inequalities

h(θ̂θθ∗) = 0 6= h(θ̂θθ), q(θ̂θθ∗) ≥ q(θ̂θθ), s(θ̂θθ∗) 6= 0 = s(θ̂θθ). (11.51)

The second inequality is due to the fact that the restrictionh(θθθ) = 0 restricts the possible values
of θθθ for minimization. The third inequality results from the fact that the first order condition for
the restricted minimization is

s(θ̂θθ∗) + H(θ̂θθ∗)′λ̂λλ = 0, where H(θθθ) =
∂h(θθθ)

∂θθθ
. (11.52)

while the first order condition for the unrestricted minimization is

s(θ̂θθ) = 0. (11.53)

These three sets of inequalities inh, q, ands hold for any random sample of a finite sample
size.

Let’s first denote the probability limit of the restricted GMM estimatorθ̂θθ∗ by θθθ∗, then,
like θ̂θθ∗ for every sample size,θθθ∗ must also satisfy the restriction:h(θθθ∗) = 0. It is obvious
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that whetherθθθ∗ is equal toθθθ◦, so that the restricted GMM estimator is consistent, depends on
whetherh(θθθ◦) = 0 is correct or not. The theory for the restricted GMM estimation mentioned
in the previous subsection is based on the implicit assumption that the restrictionh(θθθ◦) = 0
is correctly specified. We should also note that the unrestricted GMM estimator is always
consistent irrespective of whether the restrictionh(θθθ◦) = 0 is correct or not.

We can now conclude that if the restrictionh(θθθ◦) = 0 is correct, then

h(θθθ∗) = 0 = h(θθθ◦), q(θθθ∗) = q(θθθ◦), s(θθθ∗) = 0 = s(θθθ◦). (11.54)

But if the restrictionh(θθθ◦) = 0 is incorrect, then

h(θθθ∗) = 0 6= h(θθθ◦), q(θθθ∗) > q(θθθ◦), s(θθθ∗) 6= 0 = s(θθθ◦). (11.55)

The direct implication of the above inequalities is that, depending on whetherh(θθθ◦) is equal
to 0, or whetherq(θθθ∗) is greater thanq(θθθ◦), or whethers(θθθ∗) is equal to0, we can judge
whether the restrictionh(θθθ◦) = 0 is correct or not. Therefore, even though for a finite sample
size we haveh(θ̂θθ) 6= 0, q(θ̂θθ∗) ≥ q(θ̂θθ), ands(θ̂θθ∗) 6= 0, the differences are expected to become
small as the sample size becomes large if, and only if, the restrictionh(θθθ◦) = 0 is correct. This
conclusion is important because it helps us formulate three formal tests for the hypothesis about
the truthfulness of the restrictionh(θθθ◦) = 0, as will be explained next.

11.8 Hypothesis Testing

Given the GMM estimator̂θθθ that is based on over-identified moment condition, there are three
asymptotically equivalent tests for testing

H0: h(θθθ◦) = 0 against H1: h(θθθ◦) 6= 0,

whereh is a J-vector of functions of the parameterθθθ . To explain the motivation of the tests, we
need to think the null hypothesish(θθθ◦) = 0 as a set of restrictions on the true parameter value
θθθ◦.

11.8.1 Wald Test:

Wald test is based on the idea of using the difference betweenh(θ̂θθ) and0 to decide whether the
null hypothesis is true. To determine whetherh(θ̂θθ) is significantly close to 0 or not, we need
the following result which can be proved easily:

h(θ̂θθ)
A
∼ N (h(θθθ◦),

1

n
H(θθθ◦)

[
G(θθθ◦)

′���(θθθ◦)
−1G(θθθ◦)

]−1H(θθθ◦)
′), where H(θθθ) =

∂h(θθθ)

∂θθθ
.

(11.56)
When the null hypothesis is true so thath(θθθ◦) = 0, then we have the following distribution
result for the quadratic formW:

W ≡ n h′(θ̂θθ)
{
H(θ̂θθ)

[
G(θ̂θθ)′ ���(θ̂θθ)−1G(θ̂θθ)

]−1H(θ̂θθ)′
}−1

h(θ̂θθ)
A
∼ χ2(J), (11.57)
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whereJ is the number of restrictions or the number of rows in the vectorh. This result forms
the basis for the Wald test. Given the size of the testα and the corresponding critical valuecα

from theχ2(J) distribution, the null hypothesis is rejected ifh(θ̂θθ) is significantly different from
0 or, equivalently, the value ofW is greater than the critical valuecα.

11.8.2 The Minimumχ2 Test:

The minimumχ2 test is based on the idea of using the difference betweenq(θ̂θθ∗) and q(θ̂θθ)

to decide whether the null hypothesis is true. Specifically, we have the following asymptotic
result: if the null hypothesish(θθθ◦) = 0 is true, then

MC ≡ 2n
[
q(θ̂θθ∗) − q(θ̂θθ)

] A
∼ χ2(J). (11.58)

Hence, the null hypothesis is rejected if the value ofMC is greater than the critical valuecα.

11.8.3 The Lagrange Multiplier Test:

Lagrange multiplier test is based on the idea of using the difference betweens(θ̂θθ∗) and0 to
decide whether the null hypothesis is true. It can be shown that the quadratic form

L M ≡ n s(θ̂θθ∗)′
[
G(θ̂θθ∗)′���(θ̂θθ∗)−1G(θ̂θθ∗)

]−1s(θ̂θθ∗)
A
∼ χ2(J), (11.59)

if the null hypothesis is true. Hence, we reject the null hypothesis if the value ofL M is greater
than the critical valuecα.10

The three test statisticsW, MC, andL M are asymptotically equivalent and have the same
asymptotic distributionχ2(J) when the null hypothesis is true. But in finite sample applica-
tions, these three tests may give conflicting results and there is no consensus about how to
resolve such conflicts when they occur.

Finally, since the three tests are asymptotically equivalent, there is no need to compute all
three test statistics all the time. We note the Wald test statisticW only requires the unrestricted
GMM estimatorθ̂θθ , the Lagrange multiplier test statisticL M only requires the restricted GMM
estimatorθ̂θθ∗, while the minimumχ2 test statisticMC requires both restricted and unrestricted
GMM estimators.

10The reason for the nameLagrange-Multiplier testis because the first-order condition for the restricted GMM
estimator impliess(θ̂θθ∗) = −H(θ̂θθ∗)′λ̂λλ so thatL M ≡ n λ̂λλ

′

H(θ̂θθ∗)
[
G(θ̂θθ∗)′���(θ̂θθ∗)−1G(θ̂θθ∗)

]−1H(θ̂θθ∗)′λ̂λλ, which is a test
statistic based on the Lagrange multiplierλλλ.
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11.9 The GMM Interpretation of the Restricted OLS Esti-
mation

As mentioned earlier in Subsection 11.3, the OLS estimation of the multiple linear regression
model is based on the just-identified population moment condition (11.14) and its sample coun-
terpart (11.15). The immediate consequence of imposing the linear restriction

Rβββ = q (11.60)

to the GMM estimation is that the restricted GMM estimator cannot be exactly solved from the
just-identified moment condition alone since the linear restriction also needs to be satisfied. The
restricted GMM estimation has changed from the just-identified case to an over-identified case.

To construct the objective function for deriving the GMM estimator in the over-identified
case requires the sample counterpart of���(βββ) in (11.17) which is

s2 1

n
X′X, (11.61)

wheres2 is any consistent estimator ofσ 2. The objective function for the over-identified GMM
estimation is a quadratic function in the sample moments with the inverse of the above term as
the weighting matrix:

q(βββ) =
1

2ns2
(y − Xβββ)′X(X′X)−1X′(y − Xβββ), (11.62)

Recall that the objective function for the OLS estimation isS(βββ) = (y − Xβββ)′(y − Xβββ). It is
easy to show

2ns2q(βββ) = S(βββ) − y′My , (11.63)

whereM = X(X′X)−1X′. Because of the equivalence betweenq(βββ) and S(βββ) (both 2ns2

andy′My do not involveβββ), we conclude that the OLS estimator and the GMM estimator are
identical. We should understand that in the present framework the OLS estimator is derived as
the GMM estimator from the over-identified moment conditions. The approach is different from
the one in Subsection 11.3 where the OLS estimator is derived as the GMM estimator from the
just-identified moment conditions. It is interesting to note that if we plug the OLS estimator
b into the quadratic objective function (11.62), we getq(b) = (y′My − y′My)/2ns2

= 0,

which is the smallest possible value of that quadratic function. This special result reflects that
the objective function (11.62) actually is built from just-identified, instead of over-identified,
moment conditions.

We now turn to the restricted GMM estimator subject to the linear restriction (11.60) which
is to be solved from

min
βββ

q(βββ) s.t. Rβββ = q. (11.64)

Becauseq(βββ) andS(βββ) are equivalent, the first-order condition for the restricted GMM estima-
tion is also equivalent to the one for the restricted OLS estimation so that, similar to the case
of the unrestricted estimation, the restricted GMM estimator is the same as the restricted OLS
estimatorb∗.
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Three Asymptotic Tests Given that the unrestricted and restricted OLS estimators both have
the GMM interpretations, they can be used to construct the three asymptotically equivalent tests
for testing

H0: Rβββ = q against H1: Rβββ 6= q.

1. Wald Test: based on the asymptotic result

Rb
A
∼ N (q, σ 2R(X′X)−1R′), (11.65)

we can immediately get the Wald test statistic which is

W =
(Rb − q)′[R(X′X)−1R′]−1(Rb − q)

s2

A
∼ χ2(m), (11.66)

under the null hypothesisH0, wheres2 is any consistent estimator ofσ 2.

2. The Minimumχ2 Test: given the objective function (11.62) for the GMM estimation, the
minimumχ2 test statistic is

MC = 2n
[
q(b∗)−q(b)

]
= 2n q(b∗) =

(Rb − q)′[R(X′X)−1R′]−1(Rb − q)

s2

A
∼ χ2(m),

(11.67)
under the null hypothesisH0, wheres2 is any consistent estimator ofσ 2. Note thatq(b)

is identically equal to 0.

3. The Lagrange Multiplier Test: given the score function

s(βββ) =
1

ns2
X′(y − Xβββ), (11.68)

the Lagrange multiplier test statistic is11

L M =
(y − Xb∗)′X(X′X)−1X′(y − Xb∗)

s2

=
(Rb − q)′[R(X′X)−1R′]−1(Rb − q)

s2

A
∼ χ2(m), (11.69)

under the null hypothesisH0, wheres2 is any consistent estimator ofσ 2.

It is interesting to see that these three asymptotic tests are identically equal and

W = MC = L M = m·F, (11.70)

whereF is the F test statistic discussed in Chapter 6 andm is the number of restrictions. It
should also be pointed out that, in contrast to the F test, the three asymptotic tests do not hinge
on the normality assumption and they are valid only when the sample size is sufficiently large.

11The Lagrange multiplier test statistic can also be derived from the fact that the asymptotic distribution of the

Lagrange multiplier estimatorc which isc = [R(X′X)−1R′]−1(Rb − q)
A
∼ N (0, σ 2[R(X′X)−1R′]−1), under

the null hypothesisH0. See (6.120) in Chapter 6.


