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THE GENERALIZED METHOD OF
MOMENTS ESTIMATION

Given that a random sampie, Xo, . .., X, are drawn from a population which is characterized
by the parameteé whose true value i8,. If we can identify a vector of functiongx; ) of the
random variablex and the parameté such that the true parameter valieuniquely solves
the following population moment condition

E[g(x; 0)] =0, (11.1)

while the estimato@ is the unique solution to threample moment condition
1 n
~> 9(x:6) =0, (11.2)
i=1

then, under some regularity conditions, we can show éhist consistent and asymptotically
normal

A~ 1 _
6~ N, G0, R, GO, (11.3)
whereé, denotes the true value of the paraméter
dg(X; 6)
G@) =E 11.4
0 |22, (1.9
and
Q(6) = E[g(x; 6)g(x; 8)]. (11.5)

Any estimator defined in such a setup is referred to &eneralized Method of Moment
(GMM) estimator. The approach of first identifying some moment condition and then deriving
the corresponding GMM estimator from its sample counterpart has become a very popular way
of generating new estimators in econometrics.

A Simple Example Given the random samplq, Xo, .. ., X, drawn from an unspecified pop-
ulation with a population mean and variance 2, we have derived the asymptotic properties of

the sample meak as an estimator gf in such a case by directly applying law of large numbers
and the central limit theorem. We now show that the asymptotic analysis of the sample mean
can fit into the GMM framework.
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Let's consider the functiog(xi; ) = X; — u which gives the following population moment
condition:

Elg(xi; w)] = E(X) —n=0.
It is obvious that the only solution gf is the true value of the population meanto which
E(xj) is equal. Thesample counterpanf the population moment condition is

1 1«
ﬁ;g(xﬁﬂ):ﬁ;xi —n=0

and the solution ofx is nothing but the sample mean So the sample meanis actually a
GMM estimator ofu. Consequently, we can apply the general results for the GMM estimator
to establish the consistency and asymptotic normality of the GMM estimatibiis also easy

to prove that the asymptotic variance of the GMM estimatis n—1o2. Although the GMM
argument here appears tedious, the idea is important and has wide applicability.

11.1 Consistency and Asymptotic Normality

The following argument for proving the consistency of the GMM estimator helps illustrate the
key idea of the GMM approach.
We first note, if the second momentgix; 8) exists, then law of large numbers implies

%Zg(xi;e) L, Elgx; 0)] (11.6)
i=1

It means that the population moment condition (11.1) can be approximated by the sample mo-
ment condition (11.2). If the estimatérsolves the sample moment condition (11.2) irrespec-
tive of the sample size, then its probability limit, s&y, must also solve the probability limit
of (11.2) which is the population moment condition (11.1). But by definition the true param-
eter valuef,, uniquely solves the population moment condition (11.1), so the probability limit
6* must be equal to the true parameter valye That is,d is a consistent estimator 6f In
other words, if we know the true parameter value is the solution to certain population moment
condition, then the solution to its sample counterpart will be a consistent estimator.

The proof of asymptotic normality is based on Taylor expansion and the central limit theo-
rem. Given tha® converges in probability t6, and thatg is differentiable with respect @,
then for sufficiently largen the first-order Taylor expansion of (11.2) around the true value
gives the following approximation

Zg(x"e) ~ _Zg(xhe )+ — Z 89(8|,0 )(0 6,) (11.7)

or

T [ LA T RN R RUN
Jﬁ(G—GO)N—[ﬁ;T} \/ﬁﬁ;g(xlaeo)~ (11.8)
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Provided that the second momentof(x;; 6,)/06 exists, law of large numbers again implies

1o~ 39(%i:0,)  p
DDy G(6.), (11.9)
i=1
and the central limit theorem implies
1 a
VALY 0000 —E[gx: 8] | — U ~ N, Q6.)). (11.10)
i—1

where E{g(x; 00)] = 0. Consequently,

@ -0, -5 —GO.) U ~ N, GB.)IQ0.) GB.) Y, (11.11)

which implies (11.3).

The Estimator of the Asymptotic Variance-Covariance Matrix Based on law of large num-
bers and (11.9), it is readily seen that the following statistic is a consistent estimator of the
asymptotic variance-covariance mat@x6,) 1Q(6.) G(8,) ! of the GMM estimato®:

n n

A~ 1-1 n ~ /-1
1|1—d9x:6)| 1 Avers . a1 | Iy 09(xi: 6)
5 [528—0} ﬁ;[g(xl’o)g(xl’o)] |:n 2—89 j| : (11.12)

11.2 Regqularity Conditions and Identification

In proving consistency and asymptotic normality of the GMM estimator, we have used law of
large numbers and the central limit theorem. Obviously, certain assumptions are required before
we can apply these theorems. The assumptions that ensure the validity of the GMM estimation
are called regularity conditions and they can be divided into four categories:

1. Conditions that ensure the differentiability @fx; 8) with respect tod. For example,
g(x; @) is usually assumed to be twice continuously differentiable with respékct to

2. Conditions that restrict the momentsgik; 8) and its derivatives with respect & For
example, the second momentsyok; #) and its first derivative are usually assumed to be
finite.

3. Conditions that restrict the range of the possible values which the parainedertake.
For examplef is not allowed to have infinite value and the true valyanay not be at
the boundary of the permissible rangefofif 8, is on the boundary of the permissible
range ofg, then convergence #, cannot take place freely from all directions).

4. The solution to the population moment conditiqmé; #)] = 0 must be unique and the
unigue solution must be the true val@igof the parameter.
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The first three categories of regularity conditions are somewhat technical and are routinely
assumed. However, we do need to make special efforts to check the validity of the last one
in each application. This last condition is referred tdlasidentification conditiotbecause it
allows us to identify the true parameter valugefor estimation.

An obvious necessary condition for identification is that the row numbemsalthe vector
g(X; @) is no less than the row number, skyf the parameter vect@. That is, the number of
individual population moment conditions cannot be smaller than the number of parameters to
be estimated. Iin < k, then the population moment condition will have multiple solutions of
which all but one can be the true value so that the resulting GMM estimator does not necessarily
converge to the true parameter value. This is the so-called under-identification problem.

The identification condition is implicitly assumed in the previous analysis of the GMM
estimation. In fact, we have made a stronger assumptionnthat k so that the derivative
G(x; 0) of g(x; @) with respect td is a square matrix and invertible. This is the so-called just-
identification case. In section 11.4 we will examine the over-identification casemwittk.

11.3 The GMM Interpretation of the OLS Estimation

For the linear regression model
Yi =X B +si, (11.13)

let's assume that the samgig, x{},i = 1,...,n, arei.i.d,, and that &) = 0. In the present
framework, the explanatory variablgsare stochastic and, following the arguments in Chapter
10, we have to assume the following population moment condition:

E(xjsi) = E[Xi(y; — X:ﬂ)] =0. (11.14)

The dimensions of; and the zero vector on the right hand side are Botho we have in fadt
population moment conditions which are just enough for us to estimategheameters irB,
i.e., we have a just-identification cas&he corresponding sample moment condition is

% Y xi(yi —xp) =0, (11.15)
i=1

which can be written as

%X/(y —XB) =0 or X'XB = X'y. (11.16)

lwe treatB not only as the notation for the regression coefficients but also as their true values. Such notational
ambiguity has been existing throughout the earlier chapters. Better notations for the true values of the regression
coefficients may bg..

2|f the x; contains the constant term 1, then one of the moment conditiongyisEx; B) = 0 or Ey;) =
Ex)'B.
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But this is equivalent to the first-order condition for the OLS estimation. Hence, the OLS
estimator, which are solved from the above sample moment conditions, can be considered as a
GMM estimator.

In order to apply the asymptotic theory for the GMM estimation, we need to first evéluate

Q(B) = Elxieieix{] = E[E(e?| x)xiX{| = E(0?XiX)) = 0 ’E(Xi X)) (11.17)
and I (v )
G(B) =E [X'(y'a—;x'ﬁ)] — _ExiX)). (11.18)

It is important to note that one of the assumptions (Assumption 5) we made for a multiple linear
regression model is

1
LS NS

with Q being a finite and p.d. matrix, we can equatgk;) to Q. That is, we hav&(8) = o2Q
andG(B) = —Q.

Now, following the general asymptotic theory for the GMM estimation, we then have that
the OLS estimatob is consistent:

b % B (11.19)

and
Jnb—8) % N, 62Q7Y). (11.20)

11.4 The GMM Interpretation of the MLE

Suppose the sample;},i = 1, ..., nare i.i.d. with the density functiori (x|6,), whereé, is
an unknowrk-dimensional parameter to be estimated, then we have shown in Chapter 9 that
aln f(x10,)
E| ————| =0, 11.21
[ ) ( )

which can be viewed dspopulation moment conditions that are just enough for us to estimate
thek-dimensional parametr,. The corresponding sample counterpart is

Z aln f(X. 16) —0. (11.22)

and the solution, denoted lfy is certainly the MLE off,. In other words, the MLE can be
viewed as a GMM estimator.

3Here, we have further assumed tha.t;Exi) = o2 (i.e., & is homoscedastiwith respect tok; ), which will be
true if x; is assumed to be nonstochastic.
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In order to apply the asymptotic theory for the GMM estimation, let’s first define

_[alnfxile) [aln f(xi6)7
) — [ 111610 [0 1x0)] @129
and 2,
B 0In f(xi|0)
G@) =E [W] . (11.24)
It has also been shown in Chapter 9 tfaP,) = —G(6,). Now following the general asymp-

totic theory for the GMM estimation, we then have the well-known results that the I[ES

consistent arfd
Jnbd -6 % N0 Q0. (11.25)

11.5 The GMM Estimation in the Over-ldentification Case

If in the population moment condition
E[g(x; 8,)] =0 (11.26)

the row number of is strictly greater than the row number of the parameter vettren it is
not possible to solve its sample counterpart

%Zg(xi; 6) =0, (11.27)
i=1

because the number of equations is greater than the number of parameters to be solved. What
we could do in such a case is to find a valugdhat makes the sample moment condition as
close to zero as possible based on the following quadratic form:

1 T
min [ﬁ;g(xi,e)} W [ﬁ;g(xi,e)} (11.28)

whereW is some positive definite weighting matrix of constants.

4In Chapter 9 we did not assume the sample to be identically distributed; i.e., the density furictigés,)
have the subscript indicating they are all different. In such a case, the variance-covariance matrix of the asymp-
totical distribution is the inverse of

1 321In i (xi6.)
im =Y Ef——— 70 |
nLoon; [ 9096’

It is readily seen that such a matrix reduce$2@,) = —G(6,) in the present i.i.d. case.
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Given the assumption th&(#) has full column rank and some additional regularity con-
ditions, @ is consistent. To see this we note that the first-order condition for the minimization
problem (11.28) is /

1 < 3g(Xi; 6) 1
[ﬁ ; a—o} W [ﬁ ; g(xi; 9)} =0, (11.29)
which can be viewed as the sample counterpart of the moment conditions

G(6)'W E[g(x; 6)] = 0. (11.30)

Given thatG (@) has full column rank and tha¥/ is nonsingular, then only the ture parameter
value@, can satisfy these moment conditions, which in turns implies that the GMM estimator
6 is consistent.

We can further show thak is asymptotically normat:

b 2 NO. [GO.IWGO.)] 'GB.)YW Q(B.) WG (0.)[G0.)WG O] .

" (11.31)

Obviously, different weighting matri¥V will give different estimators with different asymp-

totic variance-covariance matrices. That is, the efficiency of the resulting GMM estimators

5Given thaté converges in probability t@, and thatg is twice differentiable with respect @, then for
sufficiently largen the Taylor expansion of (11.29) around the true v@uegives the following approximation

ag(x ) 1 .
0= -Z A } [ﬁégm;m}

(1. agxi:0) | 89x:0) | . [1 9g0x: 8,) A
2T Zg(x' o | {32 5 | w T sf -0

i=1 i=1

2

or

/ -1 /
A 1~ 09(%i: 6.) 1~ 09(%i: 6.) 1 - 9906 6.) I
Jﬁ(@—@o)w{—[ﬁg TR w EE 0 +S HE 20 W «/_ﬁ;:lg(xneo) )

i=1 i=1 i=1

whereSis ak x k matrix in which thejth column is

18 %90xi:0) ] [1¢

[HZ 2000, | " n 20000 |

i=1 i=1

We note that (11.6) implies th&converges in probability to zero. Thus, by (11.9) and (11.10), we have
VR -0 -5 —[GOIWGO,)]GO)W u

~ N0, [GOYWGO.)] "G(8o)W Q(8.) WG (8,)[G(6.)WG (8] .



CHAPTER 11. THE GMM ESTIMATION 9

depends on the weighting mathiX. It can be shown thét

[G(6.)WG(8)] ' G(6,)'W Q(8,) WG (8)[G(8.)W G (8.)] " = [G(8.)'R6.)2G(6.)]

(11.32)
for any positive definit&V. This finding implies that the most efficient GMM estimafiozan be
obtained by settingV = a for any consistent estimat@ of Q(6.) = E[a(x; 6)9(X; 8,)']
and then solving the following minimization problem:

1 1 . . /N_l 1 . .
min [ﬁ;g(x,,e)} Q [ﬁ;g(x,,e)] (11.33)

The resulithg GMM estimator is denoted agair@ashich from now on will represent such an
efficient GMM estimator. It is readily seen thiis consistent and asymptotically normal

o X wve., %[G(oo)/sz(eo)—le(eo)]‘l). (11.34)

The derivation of the GMM estimatdt with over-identified moment condition essentially
requires a two- -stage procedure because a prellmlnary estimator is needed for calculating the
weighting matrixQ. A particularly simple choice of is

LS g Do By (11.35)

wheref is a preliminary estimator &f which can be angonsistenestimator 0. A common
one can be derived by solving the following simpler minimization problem

min [ Zg(x.,e)} [%Zg(xi;é))] (11.36)
i—1

That is, the preliminary consistent estimafidtself is a GMM estimator based on an especially
simple weighting matrixv = 1.
The asymptotic variance-covariance matrix can be consistently estimated by

-1 n . -1
1 99(xi; 9) 1 99(xi; 0)
n |:ﬁ Z 0 :| |: Z a(Xi; 0)9(X|, 0) j| |:ﬁ Z 0 i| . (11.37)

which can be compared to the one for the just-identified case in (11.12).

blet G = G, and @ = Q(b.), then (G'WG) IGWQWGGWG) ! — (GQ1G)?
(GWG)~GWQWG - GWG(G'Q 6 1G'WG](G'WG)™? = Gwe)-lewe[et -
Q16GE'Q716) 'R |QWG(G'WG)™! which can be expressed in the form OAQA’ with
A = @we)lewe[e™! - @ lcE'e6)le’'Q 1], SinceAQA’ is necessarily a p.d. matrix, we
therefore havéG'WG)~1GW' QWG (G'WG) ! > (G'Q~1G) L.
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11.6 The GMM Interpretation of the Instrumental Variable
Estimation

For the linear regression model (11.13), suppose the stochastic explanatory vatiades
endogenous.e.,
E(xiei) = E[Xi(yi —x{B)] # 0. (11.38)

The analysis in Chapter 10 indicates that the OLS estimation will not be consistent. To estimate
the regression coefficier8, we need to employ certaimstrumental variableg; such that
Cov(zj, xj) # O and

Cov(zi, &) = E(ziei) = E[zi (i — X{B)] = 0. (11.39)

Here, let's assume the dimensiomsof z; is greater than or equal to the number of ex-
planatory variables ix;. The condition (11.39) can now be viewed as the (over-identified or
just-identified) moment conditions we need for conducting the GMM estimation for the linear
regression model (11.13).

In order to implement the GMM estimation, we need to first evafuate

Q(8.) = Ezisisiz) = E(67ziZ) = E[E(¢?| 2)ziZ]] = E(6%ziZ)) = 0°E(ziZ)).  (11.40)

The GMM estimation foiB is then based on
1 A TLE N L
min [ﬁ Z Zi (Y — x{ﬂ)} <U2ﬁ Z Z; z{) [ﬁ Z Zi(y, — xi’ﬁ)} ) (11.41)
G R = i=1
which can be written &s
min= (y — X222 1Z/(y - XB). (11.42)

whereZ =[z12, ... z,]'. Itis readily seen that the solution to this minimization problem is
B =[X2Z'2)72'X] X'2Z'2)" 2y, (11.43)

which is also referred to as thestrumental variabldlV) estimator of8.°

"Here, we have further assumed tha,thEzi) = o2 i.e.,& is homoscedastiwith respect t; .

8We drop the scalas? from the expression. Doing so will not affect the derivation of the GMM estimator of

B.

%In Chapter 10 we suggested a two-stage estimation for using the instrumental variables. It is readily seen that
the resulting two-stage estimator is identical to (11.43).
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In order to apply the asymptotic theory for the GMM estimation, we need

3z (Yi — X B)

G(ﬁ)EE[ 3B

] = —E@Xx). (11.44)
The general asymptotic theory for the GMM estimation implies that the IV estirﬁ?aimcon-
sistent and

JB-B - w, O‘Z{E(Xi z)[E@ Zi/)]_lE(ZiXi/)}_l)' (11.45)

Note that the asymptotic variance-covariance matrix for the 1V estinfat@an be estimated by
[X'zZ'z)z'x] ™,

wheres? is some consistent estimator®f.

11.7 The Restricted GMM Estimation

Suppose other than the over-identified moment condition, we have another set of conditions that
we believe the true parametgy should satisfy. Let's also assume such extraneous conditions
can be expressed as arvector of functions of the paramet@r

h@.) = 0. (11.46)

We note these conditions do not involve the random varigb® that they are fundamentally
different from the moment condition. If these conditions are true, then we certainly want the
GMM estimator to satisfy them. The way to impose these conditions to the GMM estimator
is to consider the restricted minimization with the conditlo@@,) = O imposed as a set of
restrictions:

T1& a1 |
min [ﬁgg(x.,e)} Q [ﬁ;g(x.ﬁ)} subject toh(6) = 0, (11.47)
or ,
1S ) 511y . /
min {ﬁgg(x,,m} Q [H;g(x.,e)} +h()'a, (11.48)

wherea is anJ-vector of Lagrange multipliers. The solution to such a problem, denot@d, as
is called the restricted GMM estimator as opposed to the unrestricted GMM estinator

When we derive the GMM estimator based on the over-identified moment cond[tjj(m;lﬂo)] =
0, the moment condition is never exactly satisfied by either the restricted or the unrestricted
GMM estimator. But it should be pointed out the restrictio@,) = 0, in contrast, is exactly
satisfied by the restricted GMM estimator. So the moment condition and restriction are not
treated symmetrically although both are conditions on the parameter value.



CHAPTER 11. THE GMM ESTIMATION 12

It can be proved that, just like the unrestricted GMM estimator, the restricted GMM estima-
tor is consistent and has an asymptotic normal distribution. However, while both estimators are
consistent, their asymptotic normal distributions are not the same. In particular, the asymptotic
variance-covariance matrix of the restricted GMM estimator is always smaller than or equal to
that of the unrestricted GMM estimator. This result simply reflects the fact that the restricted
GMM estimator, by incorporating more information from the restrictig,) = 0, is more
(asymptotically) efficient. The present discussion is very similar to the one we had on the the
relationship between the unrestricted MLE and the restricted MLE. As a matter of fact, the
derivation of the asymptotic distribution of the restricted GMM estimator is parallel to that of
the restricted MLE.

11.7.1 Comparing Restricted and Unrestricted GMM Estimators

To simplify our exposition here, let's denote (half of) the objective function for minimization in
defining the GMM estimator with over-identified moment condition by

_ 1 1 - . /N_l 1 - .
a®) =3 [ﬁ;g(xl,o)} Q [Ei;g(x.,e)] (11.49)

and the first order derivative @f(@) by

n

(1&g o] xaf1en
3(9)=[HZT} Q [ﬁi;g(x.,e)] (11.50)

i=1

Because of the difference between the restricted GMM estindt@nd the unrestricted
GMM estimatord, we observe the following inequalities

h@*) = 0 # h(@), qé* > q@), s(6*) # 0= s(6). (11.51)

The second inequality is due to the fact that the restridti@) = O restricts the possible values
of @ for minimization. The third inequality results from the fact that the first order condition for
the restricted minimization is

N A oh(6
S(@*) + HO*)'AL =0, where H(@) = % (11.52)
while the first order condition for the unrestricted minimization is
s9) = 0. (11.53)

These three sets of inequalitieshing, ands hold for any random sample of a finite sample
size.

Let's first denote the probability limit of the restricted GMM estimafor by 6%, then,
like 6* for every sample sized* must also satisfy the restrictiom(8*) = 0. It is obvious
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that whethe®™ is equal tod,, so that the restricted GMM estimator is consistent, depends on
whetherh(6,) = Ois correct or not. The theory for the restricted GMM estimation mentioned
in the previous subsection is based on the implicit assumption that the resthé¢fign= 0
is correctly specified. We should also note that the unrestricted GMM estimator is always
consistent irrespective of whether the restrictgé,) = 0 is correct or not.

We can now conclude that if the restrictibf@,) = 0 is correct, then

h(6*) = 0= h(8,), q®*) =q(.), s(6*) = 0= s(6.). (11.54)
But if the restrictionrh(6,) = 0is incorrect, then
h(6*) =0 # h(6.), q@é* > q@.), s(0*) # 0 = s(6.,). (11.55)

The direct implication of the above inequalities is that, depending on whietBey is equal
to 0, or whetherq(6*) is greater tham(6,), or whethers(8*) is equal to0, we can judge
whether the restrictioh(6,) = 0 is correct or not. Therefore, even though for a finite sample
size we haveh(@)) # 0, q(é*) > q(é), ands(é*) # 0, the differences are expected to become
small as the sample size becomes large if, and only if, the restricty) = O is correct. This
conclusion is important because it helps us formulate three formal tests for the hypothesis about
the truthfulness of the restrictidn@,) = 0, as will be explained next.

11.8 Hypothesis Testing

Given the GMM estimato# that is based on over-identified moment condition, there are three
asymptotically equivalent tests for testing

Ho: h@@,) =0 against  Hi: h(8,) #0,

whereh is a J-vector of functions of the paramet@r To explain the motivation of the tests, we
need to think the null hypothesigf,) = 0 as a set of restrictions on the true parameter value
0,.

11.8.1 Wald Test:

Wald test is based on the idea of using the difference betWé!a)randO to decide whether the
null hypothesis is true. To determine whetihgé) is significantly close to 0 or not, we need
the following result which can be proved easily:

h@) 2 N(h@.), %H(00)[G(Oo)’Q(OO)_lG(Go)]_lH(00)/), WhereH(e):ah(G).

(11.56)
When the null hypothesis is true so tha#,) = O, then we have the following distribution
result for the quadratic foridv:

W =nh'®) [H®)[G®) Q(é)_lG(é)]_lH(é)/}_l h@) 2 x2(J). (11.57)
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whereJ is the number of restrictions or the number of rows in the veletorhis result forms
the basis for the Wald test. Given the size of the éeahd the corresponding critical valag
from thex 2(J) distribution, the null hypothesis is rejectedw'(fé) is significantly different from
0 or, equivalently, the value & is greater than the critical valg.

11.8.2 The Minimum x?2 Test:

The minimumy?2 test is based on the idea of using the difference betvagéh) and q(6)
to decide whether the null hypothesis is true. Specifically, we have the following asymptotic
result: if the null hypothesig(8,) = O is true, then

MC = 2n[q@") —a@®)] ~ xJ). (11.58)

Hence, the null hypothesis is rejected if the valu&/€ is greater than the critical valug.

11.8.3 The Lagrange Multiplier Test:

Lagrange multiplier test is based on the idea of using the difference bes@8nand0 to
decide whether the null hypothesis is true. It can be shown that the quadratic form

LM = ns@*)[G(6*)Q6*)1G(0%)] 's6*) 2 520, (11.59)

if the null hypothesis is true. Hence, we reject the null hypothesis if the valudvbfs greater
than the critical value,, .10

The three test statistio&/, MC, andL M are asymptotically equivalent and have the same
asymptotic distributiory2(J) when the null hypothesis is true. But in finite sample applica-
tions, these three tests may give conflicting results and there is no consensus about how to
resolve such conflicts when they occur.

Finally, since the three tests are asymptotically equivalent, there is no need to compute all
three test statistics all the time. We note the Wald test staW¢tanly requires the unrestricted
GMM estimatoré, the Lagrange multiplier test statistidVl only requires the restricted GMM
estimatod*, while the minimumy? test statistidViC requires both restricted and unrestricted
GMM estimators.

10The reason for the nameagrange-Multiplier test§ because the first-order condition for the restricted GMM
estimator implies(0*) = —H(6*)’A sothatLM = nA H(0*)[G(O*)’Q(B*)‘lG(e*)]_lH(6*)%, which is a test
statistic based on the Lagrange multiplier
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11.9 The GMM Interpretation of the Restricted OLS Esti-
mation

As mentioned earlier in Subsection 11.3, the OLS estimation of the multiple linear regression
model is based on the just-identified population moment condition (11.14) and its sample coun-
terpart (11.15). The immediate consequence of imposing the linear restriction

R =q (11.60)

to the GMM estimation is that the restricted GMM estimator cannot be exactly solved from the
just-identified moment condition alone since the linear restriction also needs to be satisfied. The
restricted GMM estimation has changed from the just-identified case to an over-identified case.
To construct the objective function for deriving the GMM estimator in the over-identified
case requires the sample counterpai®¢g) in (11.17) which is
51
n
wheres? is any consistent estimator 6€. The objective function for the over-identified GMM
estimation is a quadratic function in the sample moments with the inverse of the above term as
the weighting matrix:

2 ZX'X, (11.61)

1 , N
qp) = eV~ XB)X(X'X)"IX'(y = XB), (11.62)
Recall that the objective function for the OLS estimatiorS9§8) = (y — XB)'(y — XB). ltis
easy to show

2n2q(B) = S(B) — Y My, (11.63)

whereM = X(X’X)~1X’. Because of the equivalence betwegis) and S(8) (both hs?
andy’My do not involveB), we conclude that the OLS estimator and the GMM estimator are
identical. We should understand that in the present framework the OLS estimator is derived as
the GMM estimator from the over-identified moment conditions. The approach is different from
the one in Subsection 11.3 where the OLS estimator is derived as the GMM estimator from the
just-identified moment conditions. It is interesting to note that if we plug the OLS estimator
b into the quadratic objective function (11.62), we ggb) = (yYMy — y'My)/2ns?> = 0,
which is the smallest possible value of that quadratic function. This special result reflects that
the objective function (11.62) actually is built from just-identified, instead of over-identified,
moment conditions.

We now turn to the restricted GMM estimator subject to the linear restriction (11.60) which
is to be solved from

nLjn a(B) s.t. RB =q. (11.64)

Becausea|(B) andS(B) are equivalent, the first-order condition for the restricted GMM estima-
tion is also equivalent to the one for the restricted OLS estimation so that, similar to the case
of the unrestricted estimation, the restricted GMM estimator is the same as the restricted OLS
estimatorb*.
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Three Asymptotic Tests Given that the unrestricted and restricted OLS estimators both have
the GMM interpretations, they can be used to construct the three asymptotically equivalent tests

for testing
Ho: RB=qQ against Hi: RB #q.
1. Wald Test: based on the asymptotic result
Rb & W@ o2ROUX)IR), (11.65)
we can immediately get the Wald test statistic which is

(Rb —@/[RXX)'R1*Rb-q) A
SZ

W — x2(m), (11.66)

under the null hypothesisg, wheres? is any consistent estimator of.

2. The Minimumy? Test: given the objective function (11.62) for the GMM estimation, the
minimum x 2 test statistic is

Rb — q)[R(X’X)"IR]~1(Rb —
MC = 2n[q(b*)—q(b)] = 2n q(b*) = ( DTROCO R D A x2(m),

g2

(11.67)
under the null hypothesido, wheres? is any consistent estimator 6f. Note thatg(b)
is identically equal to O.

3. The Lagrange Multiplier Test: given the score function

1 /
S(B) = @X (y —XB), (11.68)

the Lagrange multiplier test statisticis
(Y = Xb*YX(X'X) "X/ (y — Xb*)

LM 2

(Rb —q/[RXX) 'R Rb—q) &
under the null hypothesidg, wheres? is any consistent estimator of.

x2(m), (11.69)

It is interesting to see that these three asymptotic tests are identically equal and
W=MC=LM=m-F, (11.70)

where F is the F test statistic discussed in Chapter 6 ang the number of restrictions. It

should also be pointed out that, in contrast to the F test, the three asymptotic tests do not hinge
on the normality assumption and they are valid only when the sample size is sufficiently large.

11The Lagrange multiplier test statistic can also be derived from the fact that the asymptotic distribution of the

Lagrange multiplier estimatarwhich isc = [R(X’X)"R’]"1(Rb — q) 2 N, o2 [RX’X)~IRT™1), under
the null hypothesi$p. See (6.120) in Chapter 6.



